

Aviation Mechanic Handbook

Fifth Edition by Dale Crane

Martha Alexant

Aviation Mechanic Handbook

Fifth Edition by Dale Crane

Aviation Supplies & Ac ademic s, Inc. Newcastle Washington

Contents

intro	duction	iii
Secti	ion 1: General information	1
1.1	Fraction, Decimal, and Metric Equivalents	3
1.2	Conversions	4
1.3	Aircraft Nomenclature	13
	Axes of an Airplane	13
	Forces Acting on an Aircraft in Flight	13
	Types of Aircraft Structure Truss Monocoque Semimonocoque	14 14 14 15
1.4	ATA-100 System of Identification	
1.5	Aircraft Nationality Identification	21
1.6	Title 14 of the Code of Federal Regulations	24
1.7	Standard Taxi Signals	27
1.8	Cylinder Color Code Identifiers	28
Secti	ion 2: Physical and Chemical	
	Periodic Table of Elements	30
2.1 Ter	emperature Conversion	31
	Absolute Temperature	36
2.2 ICA	AO Standard Atmosphere	
2.3 Di	Distribution of Electrons in the	
	Chemical Elements	38
2.4	Density of Various Solids and Liquids	41
	Density of Various Gases	41
<i>2.5</i> I	Hydraulic Relationships	
2.6 Estim	Quantity of Liquid in a Drum nating Quantity of Liquid in a Standard 55-Gallon Drum	44 44

Sect	io n3:Mathematic s	45
3. 1	Measurement Systems The International System of Units (SI) The Metric System U.S Metric Conversion Length Weight Volume	47 47 48 48 48 48 48 48 49
3. 2	Mathematical Constants	5 0
3. 3	Mathematical Symbols	51
3 .4	Squares, Square Roots, Cubes, Cube Roots of Numbers	52
3 .5	Diameter, Circumference and Area of a Circle	55
3.6	Geometric Formulas	_58
	Triangle Square Rectangle Parallelogram Trapezoid Regular Pentagon Regular Hexagon Regular Octagon Circle Ellipse Sphere Cube Rectangular Solid Cone Cylinder	58 58 58 58 59 59 59 59 59 60 60 60 60 60 60
3. 7	Trigonometric Functions	61
3. 8	Powers of Ten	
3.9	Number Systems Binary Equivalent of Decimal Octal Equivalent of Decimal Binary Equivalent of Octal Hexadecimal Number System Binary Coded Decimal Equivalent of Decimal The Gray Code American Standard Code for Information Interchange (ASCII) Special Control Functions Used in ASCII:	6 8 68 68 68 68 69 69 69 71

Secti	o n4:Aircraf tDrawings	73
4. 1 T	ypes of Aircraft Drawings Sketches Detail Drawings Assembly Drawings Installation Drawings Sectional Drawings Cutaway Drawing Exploded-View Drawing Schematic Diagram Block Diagram Repair Drawings Wiring Diagrams Pictorial Diagrams Orthographic Projections	75 75 75 75 75 75 75 75 75 75 76 76 76 76 76 76 76 76
4.2	Meaning of Lines	77
4.3	Material Symbols	
4.4	Location Identification Fuselage Stations Water Lines Butt Lines Wing and Horizontal Stabilizer Stations	79 79 79 79 79 79
Secti	on5:Aircraft ElectricalSystems	
5. 1	Electrical Symbols	
5.2	Alternating Current Terms and Values	
5. 3	Ohm's Law Relationships	<u>9</u> 2
5. 4	Electrical Formulas Formulas Involving Resistance Formulas Involving Capacitance Formulas Involving Inductance Formulas Involving Both Capacitance and Inductance Resonant Frequency Total Reactance Impedance	94 94 95 97 100 100 100 100

5.5	Electrical System Installation	
	Selection of Wire Size	101
	Notes on Wire Installation	
	Switch Derating Factors	108
	Wire and Circuit Protectors	
	MS Electrical Connectors	
	Aircraft Storago Battorios	
	Lead-Acid Batteries	116
	Nickel-Cadmium Batteries	117
Sect	on6:AircraftMaterials	
6. 1	Composition of Wrought Aluminum Alloys	121
6.2	Four-Digit Designation System for Wrought Aluminum Alloys	
6. 3	Mechanical Properties of Aluminum Alloys	123
6.4	Temper Designations for Aluminum Alloys	
	Non-Heat-Treatable Alloys	
6.5	Temperatures for Heat Treatment of Aluminum Alloys	125
6. 6 6. 7	Bearing Strength (in pounds) of Aluminum Alloy Sheet Shear Strength of Aluminum Alloy Rivets	
	Single-Shear Strength (in pounds) of Aluminum-Alloy Riv Double-Shear Strength (in pounds) of Aluminum-Alloy R	vets 127 ivets 127
6.8	SAE Classification of Steel	128
6.9	Strength of Steel Related to its Hardness	129
6.1 0	Color of Steel for Various Temperatures	130
6.1 1	Color of Oxides on Steel at Various Tempering Temperatures	131
Secti	o n7:Tool sforAircraf tMaintenance	
7.1	Measuring and Layout Tools	135
	Steel Rule	135
	Hook Rule	135
	Combination Set	135
	Vernier Calipers	136
	Dividers	136
	Outside Calipers	
	Inside Calipers	136
	Hermaphrodite Calipers	
	Scriber	

	How to Read the Vernier Scale	137
	Micrometer Caliper	138
	Dial Indicator	140
	Feeler Gages	140
	Small-Hole Gages	140
	Telescoping Gages	140
7.2	Holding Tools	141
	Vises	141
	Bench Vise	141
	Drill Press Vise	141
	Pliers	141
	Combination/Slip Joint Pliers	141
	Water Pump Pliers	142
	Vise-Grip® Pliers	142
	Needle-Nose Pliers	142
7 0	Cofety Wiving Toolo	142
7.3	Diagonal Cutting Plices	143
		143
	Sofety Wire Twisting Teel	143
		143
7.4	Bending and Forming Tools	144
	Tools for Making Straight Bends and Curves	144
	Cornice Brake	144
	Box Brake	144
	Press Brake	144
	Slip Roll Former	145
		145
	English Wheel	145
7.5	Cutting Tools	145
	Shears	145
	Throatless Shears	145
	Squaring Shears	146
	Scroll Shears	146
	Hand Shears	146
	Tin Snips	146
	Compound Shears	147
	Saws	147
	Band Saw	147
	Hacksaw	148
	Wood Saws	148
	Crosscut Saw	148
	Ripsaw	148
	Compass, or Keyhole Saw	148
	Backsaw	149

	Chisels	149
	Flat Chisel	
	Cape Chisel	.149
	Diamond Point Chisel	
	Round Nose Chisel	
	Files	
7.6	Hole Cutting Tools	.151
	Twist Drills	151
	Twist Drill Sizes	151
	Drill Gage	154
	Twist Drill Sharpening	
	Drill Point Gage	155
	Large Hole Cutters	
	Hole Saws	
	Fly Cutter	156
	Countersink	
	Reamers	
	Drills for Wood and Composite Materials	157
	Auger Bits	
	Forstner Bits	
	Flat Wood-Boring Bits	
	Brad-Point Drills	
	Spade Drill	
7.7	Threads and Threading Tools	
	Unified and American Standard Thread Form	159
	Thread-Cutting Tools	
	Body and Tap Drill Sizes	
	Taps	
	Screw Pitch Gage	
7.8	Torque and Torque Wrenches	162
	Click-Type Torque Wrench	162
	Deflecting-Beam Torque Wrench	162
	Torque Conversions	
	Recommended Torque Values	
7.9	Pounding Tools	166
	Carpenter's Claw Hammer	166
	Ball Peen Hammer	166
	Metalworking Hammers	166
	Straight Peen and Cross Peen Hammers	
	Body, or Planishing Hammer	
	Mallets and Soft-Face Hammers	<u>167</u>
	Sledge Hammers	167

Sectio	on 8: Aircraft Hardware	
	Screw Heads for Special Structural Screws	174
	Recessed-Head Screwdrivers	
	Offset Screwdriver	173
	Slot Screwdrivers	173
7.12	Screwdrivers	173
	Allen wrenches	
	Extension and Adapters	
	l ypical Socket Wrenches	
	Hand Impact Tool	
	Socket Wrench Handles	
	Socket Wrenches	
	Flare Nut Wrench	
	Combination Wrench	
	Ratcheting Box Wrench	
	Box End Wrench	170
	Ratcheting Open End Wrench	
	Adjustable Open End Wrench	
	Open End Wrench	169
7.11	Wrenches	
	Automatic Center Punch	168
	Transfer Punch	
	Pin Punch	168
	Drift, or Starting Punch	167
	Center Punch	167
	Prick Punch	167
7.10	Punches	

8.1	Standards	
8.2	Threaded Fasteners	177
	Bolts	177
	Hex-Head Bolts	
	Flush-Head Bolts	
	Drilled-Head Bolts	
	Twelve-Point, Washer-Head Bolts	
	Internal Wrenching Bolts	
	Clevis Bolts	180
	Eye Bolts	180
	Bolt Installation	180
	Bolt Fits	181

	Screws	
	Aircraft Screw Heads	182
	Set Screws	
	Self-Tapping Sheet-Metal Screws	
	Nuts	184
	Nonlocking Nuts	
	Self-Locking Nuts	185
	Low-temperature locking nuts	
	High-temperature locking nuts	
	Wing Nuts	
	Anchor Nuts	186
	Channel Nuts	
	Pressed-Steel Nuts	
	Instrument Nuts	
	Rivnuts	188
	Threaded Fastener Safetying	
	Locking Washers	
	Cotter Pins	189
	Safety Wire and Safety Wire Twisting	
3. 3	Washers	
3.4	Special Rivets	195
	Blind Rivets	195
	Friction-Lock Rivets	196
	Mechanical-Lock Rivets	197
	CherryMax Rivets, Olympic-Lok Rivets, Huck Rivets	198
	High-Strength Pin Rivets	
	Hi-Shear Rivet	
	Hi-Lok Fasteners	
	Hi-Tigue Fasteners	
8.5	Cowling Fasteners	
86	Thread Repair Hardware	20.3
	Helicoil Insert	20.3
	Acres Sleeves	204
Sect	io n9:Meta IAircraf t Fabrication	
9. 1	Sheet Metal Layout and Forming	
	Definitions	
	Layout Procedure	208
	Example	
	Forming	
9. 2	Minimum Bend Radii for 90° Bends in Aluminum Alloys	
	-	

93	3Setback
	Setback (K) Chart212
94	Bend Allowance Chart
95	Rivets and Riveting218Alternatives to Riveting218Aircraft Solid Rivets218Rivet Material219Rivet Diameter219Examples of Rivet Selection222Rivet Length222Rivet Sets224Bucking Bars222Installing Flush Rivets225Removal of Damaged Rivets226Minimum Rivet Spacing and Edge Distance226
Sectio	on 10: Aircraft Fabric Covering 227
10.1	RibStitch Spacing
10.2	RibStitch Knots
Sectio	on 11: Corrosion Detect ion and Control233
11.1	Types of Corrosion
11.2	2 Oxidation
11.3	Surface and Pitting Corrosion
11.4	Intergranular Corrosion
11.5	Stress Corrosion
11.6	Galvanic Corrosion
11. 7	Concentration Cell Corrosion
11.8	Fretting Corrosion
11.9	Filiform Corrosion
11.10	Corrosion Control

Sectio	on 12: Nondestructive Inspection	245
12.1	Visual Inspection	
	NDI	
	Visual Inspection	
	Surface Visual Inspection	
	Internal Visual Inspection	
2.2	Tap Test	
2.3	Penetrant Inspection	
2.4	Magnetic Particle Inspection	
2.5	EddyCurrent Inspection	
	How it works	
	What it is suited for	
	Method	
	Detection of corrosion	
12.6	Ultrasonic Inspection	
2.7	Radiography.	
	X-Rays	
	Gamma Rays	
	Inspection–Steps	
	Considerations	
	Safety	

Section 13: Aircraft Control Systems257			
13.1	Types of Control Systems Torque Tubes Push-Pull Rods	259 259 259	
13.2	Control Cables		
13.3	Control Cable Terminals	261	
13.4	Turnbuckles Turnbuckle Safetying Clip-Locking Turnbuckles	262 	
13.5	Control Cable Tension		
Sectio	on 14: Aircraft Fluid Lines		
14.1	Rigid Fluid Lines		
	Materials recommended for rigid fluid lines	269	
14.2	Flexible Fluid Lines	271	

14.3 Installation of Flexible Hose	
14.4 Fluid Line Identification	

Sectio n 15 : Oxyge n Syste m Servicin g	
15.1 Oxygen System Servicing	
Filling Pressure for 1,850 PSI Oxygen	Cylinders

Section 16: Aircraft Weight and Balance 281 16:1 Locating the Center of Gravity 283

16.2 Da	atum Forward of the Airplane–Nos e Wheel Landing Gear	
16.3 Da	atum Aft of the Main Wheels – Nose Wheel Landing Gear	
16 .4 Da	atum Forward of the Main Wheels-Tai I Wheel Landing Gear 286	
16.5	Datum Aft of the Main Wheels -Tai I Wheel Landing Gear.	
16.6	Location of CG with Respect to the Mean Aerodynamic Cho	ord 288

Sectio	n 17: Composite s	291
17. 1	Resin Systems–Typical Properties	. 293
17. 2	Resin Mix Ratios	.294
17. 3	Fiber/Resin Ratio Formulas	
17.4	Reinforcing Fibers	. 296
17.5	Textile and Fiber Terminology	
17.6	Yarn Part Numbering Systems	
17. 7	Fabric Weave Styles	
17. 8	Common Weave Style Numbers and Features	
17. 9	Ply Orientation Conventions	
17.1 O I	Damage Removal–Scarfing and Stepping	
17.1 1 (Core Materials	
17.12	Bleeder Schedules	305

Appendice s	
1: Hydraulic Fittings	309
2: Engines	
3: Aircraft Lead Acid Battery Theory	
4 : Aircraft Tires	
Inde x	34 7

١

Section 1: General Information

- 1.1Fraction, Decimal, and Metric EquivalentsPage31.2ConversionsPage41.3Aircraft NomenclaturePage 131.4ATA-100 System of IdentificationPage 161.5Aircraft Nationality IdentificationPage 211.6Title 14 of the Code of Federal RegulationsPage241.7Standard Taxi SignalsPage27
- 1.8 Cylinder Color Code Identifiers Page28

Fraction	Decimal	MM	Fraction	Decimal	MM
1/64	0.0156	0.397	33/64	0.5156	13.097
1/32	0.0313	0.794	17/32	0.5313	13.494
3/64	0.0469	1.191	35/64	0.5469	13.891
1/16	0.0625	1.588	9/16	0.5625	14.287
5/64	0.0781	1.984	37/64	0.5781	14.684
3/32	0.0938	2.381	19/32	0.5938	15.081
7/64	0.1094	2.778	39/64	0.6094	15.478
1/8	0.1250	3.175	5/8	0.6250	15.875
9/64	0.1406	3.572	41/64	0.6406	16.272
5/32	0.1563	3.969	21/32	0.6563	16.669
11/64	0.1719	4.366	43/64	0.6719	17.066
3/16	0.1875	4.762	11/16	0.6875	17.463
13/64	0.2031	5.159	45/64	0.7031	17.860
7/32	0.2188	5.556	23/32	0.7188	18.256
15/64	0.2344	5.953	47/64	0.7344	18.653
1/4	0.2500	6.350	3/4	0.7500	19.049
17/64	0.2656	6.747	49/64	0.7656	19.447
9/32	0.2813	7.144	25/32	0.7813	19.844
19/64	0.2969	7.541	51/64	0.7968	20.239
5/16	0.3125	7.937	13/16	0.8125	20.638
21/64	0.3281	8.334	53/64	0.8281	21,034
11/32	0.3438	8.731	27/32	0.8438	21.431
23/64	0.3594	9.128	55/64	0.8594	21.828
3/8	0.3750	9.525	718	0.8750	22.225
25/64	0.3906	9.922	57/64	0.8906	22.622
13/32	0.4063	10.319	29/32	0.9063	23.018
27/64	0.4219	10.716	59/64	0.9219	23.416
//16	0.4375	11.112	15/16	0.9375	23.812
29/64	0.4531	11.509	61/64	0.9531	24.209
15/32	0.4688	11.906	31/32	0.9688	24.606
31/64	0.4844	12 303	63/64	0.9844	25.003
1/2	0.7044	12.303	1	1.0000	25.400
1/2	0.5000	12./00	1		

1.2 Conversions

Multiply	Ву	ToGet
acres	.43,560	square feet
acres	4,047	square meters
acrefeet3	.259 x 1<>5	gallons
amperes/ sq. cm	6.452	amperes/ sq.inch
amperes/sq.inch	0.1550	amperes/ sq. cm.
ampere hours	3,600	coulombs
ampere hours	0.03731	faradays
ampereturns	1.257	gilberts
ampereturns/cm	2.540	ampere turns / inch
ampere turns/cm	1.257	.gilberts/cm.
ampere turns / inch	0.4950	gilberts / centimeter
ampere turns/ meter	0.01257	gilberts / centimeter
atmospheres	.76.0	centimeters of mercury
atmospheres	.33.9	leet of water
atmospheres	.29.92	inches of mercury
atmospheres	.10,332	kilograms/ sq. meter
atmospheres	.14.69	pounds / sq. inch
barrels of oil	42	gallons
bars	.0.9869	atmospheres
bars	106	.dynes / sq. centimeter
bars	.14.50	pounds/ sq.inch
Btu	.1.0550 x 10 ¹⁰	ergs
Btu	778.3	foot-pounds
Btu	.252.0	gram-calories
Btu	1,054.8	Joules
Btu	.107.5	kilogram-meters
Btu	.2.928 x 10""	kilowatt-hours
Btu / hour	0.2162	foot-pounds/ second
Btu / hour	3.929 x 10""	horsepower-hours
Btu/hour	.0.2931	watts
Btu / minute	12.96	foot-pounds/ second
Btu / minute	0.02356	horsepower
Btu/minute	.17.57	. watts
bushels	.1.2445	cubic feet
bushels	.2,150.4	cubicinches
bushels	.35.24	liters
bushels	.4	pecks
bushels	.64	pints (dry)

Multiply	Ву	To Get
centimeters	. 3.281 x 10 ^{,2}	-feet
centimeters	.0.3937	.inches
centimeter-dynes	1.020 x 10 ³ · · · · · · · ·	centimeter-grams
centimeter-dynes	.7.376x10-s	.pound-feet
centimeter-grams	.980.7	centimeter-oynes
centimeter-grams	7.233x10-s	.pound-feet
cm of mercury	.0.01316	.atmospheres
cm of mercury	.0.4461	feet of water
cm of mercury	. 136.0	.kilograms/ sq.meter
cm of mercury	. 27.85	.pounds/ sq. foot
cm of mercury	.0.1934	pounds/ sq.inch
cm /second	. 1.9685	.feet/ minute
cm I second	.0.03281	.feet/ second
cm / second	.0.036	kilometers/ hour
cm Isecond	.0.0194	knots
cm / second/ second	0.03281	.feet/second/second
cm / second / second	.0.02237	miles / hour/second
circular mils	5.067 x 10-6	.square centimeters
circular mils	.0.7854	.square mils
circular mils	7.854 x 10 ⁷	square inches
coulombs	1.036 x 10 ^{.5}	faradays
cubic centimeters	3.531 x 10 ⁵	cubic feet
cubic centimeters	. 0.06102	cubicinches
cubic centimeters	.10-6	cubic meters
cubic centimeters	. 1.308 x 10-s	cubic yards
cubic centimeters	2.642 x 10 ⁴	gallons (U.S.)
cubic centimeters	.0.001	liters
cubic centimeters	.2.113 x 10-:i	pints (U.S.)
cubic feet	.0.8036	bushels
cubic feet	.28,320	cubic centimeters
cubic feet	.1,728	cubic inches
cubic feet	0.02832	cubic meters
cubic feet	7.48052	gallons (U.S.)
cubic feet	.28.32	liters
cubicfeet/minute	.0.1247	gallons/second
cubic feet/minute	0.4720	liters/second
cubicfeet/second	.448.831	gallons/minute
cubic inches	.16.39	cubiccentimeters
cubic inches	.5.787 x 10 ⁴	cubic feet
cubic inches	.1.639 x 10. ⁵	cubic meters
cubic inches	.2.143 x 10⋅ ⁵	cubic yards
cubic inches	.4.329 x 10 ^{.3}	gallons (U.S.)

Multiply	Ву	To Get
cubic Inches	0.01639	.liters
cubic meters	.28.38	.bushels
cubic meters	.35.31	cubic feet
cubic meters	.61,023	cubicinches
cubic meters	.1.308	cubic yards
cubic meters	.264.2	.gallons (U.S.)
cubic yards	.27	cubic feet
cubic yards	46,656	.cubicinches
cubic yards	.0.7646	.cubicmeters
cubic yards	.202	.gallons(U.S.)
cubic yards	.764.6	.liters
cubic yards / minute	.3.367	.gallons / second
cubic yards / minute	12.74	liters / second
days	.24	.hours
days	.1,440	minutes
days	.86,400	seconds
degrees (angular)	.60	minutes
degrees (angular)	.0.01111	.quadrants
degrees (angular)	0.01745	. radians
degrees (angular)	3,600	.seconds
degrees /second	.0.01745	.radians / second
degrees / second	0.1667	.revolutions/ minute
degrees / second	2.n 8 x 10-3	.revolutions/ second
drams	1.n 18	.grams
drams	0.0625	ounces
dynes	1.020 x 10-3	.grams
dynes	10.7	i joules / centimeter
dynes	.10 ^{.5}	joules/meter (newtons)
dynes	. 7.233 x10-5	.poundals
dynes	2.248 x 10.a	. pounds
dynes / sq. centimeter	10-6	. bars
eras	9.480 x 10 ^{.11}	·Btu
ergs.	.1.0	.dvne-centimeters
erge	7 367 x 10-9	foot-pounds
orge	0.2380×10^7 or	
ergs	2.7250 40 ¹⁴	
ergs		norsepower-nours
ergs	10. /	. joules
ergs	o.2n s x 10- ¹³ ······	· kilowatt-hours
ergs / second	5.688 x 10 ⁹	Btu/minute

Multiply	Ву	To Get
ergs I second	1.341 x 10· ¹⁰ •••	horsepower
ergs I second	10. ¹⁰	kilowatts
faradays		ampere-hours
faradays	9.649 x 10 ⁴ cou	ulombs
fathoms	. 6	feet
feet	.30.48	.centimeters
feet	0.3048	meters
feet 1.6	45 x 10 ◀ r	miles (nautical)
feet	1.894 x 10""	.miles(statute)
feet of water	.0.02950	atmospheres
feet of water	.0.8826	inches of mercury
feet of water	.62.43	.pounds/ square foot
feet/minute	.0.5080	.centimeters/ second
feet/ minute	0.01667	.feet /second
feet/ second	.1.097	.kilometers I hour
feet / second	.0.5921	.knots
feet/second	.0.6818	.miles/hour
feet / second / second	.0.6818	.miles/hour/second
foot-pounds	. 1.286 x 10-3	Btu
foot-pounds	. 1.356	joules
foot-pounds	3.24x10	kilogram-calories.
foot-pounds	. 0.1383	kilogram-meters
foot-pounds/ minute	.3.030 x 10 ⁵ ••	horsepower
foot-pounds / minute	.2.260 x 10-S	kilowatts
furlongs	.660	feet
gallons	.3.785	cubic centimeters
gallons	0.1337	.cubicfeet
gallons	231	cubic inches
gallons	3.785	liters
gallons (Imperial)	1.20095	.gallons (U.S.)
gallons (U.S.)	.0.83267	gallons (Imperial)
gallons I minute	.2.228 x 10-3	cubic feet/second
gausses	6.452	lines of flux/sq.inch
gausses	10• ⁸ •• .•.•••.• .•• .•	webers I sq. centimeter
gilberts	.0.7958	ampere-turns
gilberts/ centimeter	.2.021	ampere-turns/ inch
gills	0.1183	liters
grains (troy)	.0.06480	grams
grains (troy)	.2.0833 x 10-3	ounces (avoir.)
grams	.980.7	dynes

Multiply

By

To Get

grams	9.807 x 10 ^{.5} •••••.	joules / centimeter
grams	.0.03527	. ounces (avoir.)
grams	.0.07093	.poundals
grams	2.205 x 10 ^{.3}	pounds
grams / cubic cm	62.43	.pounds / cubicfoot
grams I square cm	. 2.0481	.pounds/ square foot
gram-calories	3.9683 x 1.0 ³	Btu
	4 4 9 9 9 4 9 7	
gram-calories	4.1868 x 10' el	rgs
gram-calories	4.1868 x 10' el	rgs . foot-pounds
gram-calories gram-calories gram-calories	4.1868 x 10' el .3.0880 1.1630 x 10-6	rgs . foot-pounds . kilowatt-hours
gram-calories gram-calories gram-calories gram-centimeters	4.1868 x 10' ei .3.0880 1.1630 x 10-6 9.297 x 10-a	rgs . foot-pounds . kilowatt-hours . Btu
gram-calories gram-calories gram-calories gram-centimeters gram-centimeters	4.1868 x 10'ei .3.0880 1.1630 x 10-6 9.297 x 10-a .980.7	rgs . foot-pounds . kilowatt-hours . Btu .ergs

hectares	.2.471	acres
horsepower	.42.44	. Btu / minute
horsepower	.33,000	foot-pounds / minute
horsepower	.550	foot-pounds / second
horsepower (metric)	.542.5	foot-pounds / second
horsepower (metric)	.0.9863	horsepower
horsepower	. 10.68	.kilogram-calories / min.
horsepower	.745.7	watts
hours	.3,600	seconds
Inches	.2.540	.centimeters
Inches	. 8.333 x 10 ^{,2} •• .••.•• .••.••	feet
Inches	. 2.540 x 10 ^{,2}	meters
inches	.25.40	. millimeters
inches	.1,000	mils
inches of mercury	3.342 x 10 ⁻²	atmospheres
inches of mercury	.1.133	feet of water
inches of mercury	.345.3	. kilograms / sq. meter
inches of mercury	.0.4912	pounds / sq. inch
inches of mercury	.33.864	millibars
inches of water	7.355 x 1.0 ²	ches of mercury
inches of water	3.613 x 1.0 ²	•.• pounds / sq. inch

joules	. 9.480x 1 0 <	Btu
joules	10 ⁷	ergs
joules	0.7376	foot-pounds
joules	2.389 x 10''''	kilogram-calories
joules	0.1020	kilogram-meters

Multiply	Ву	To Get
joules	2.778 x 10 ^{.4}	watt-hours
joules / centimeter	107	dynes
joules / centimeter	.723.3	poundals
joules / centimeter	. 22.48	pounds
kilograms	.980,665	dynes
kilograms	.9.807	joules/ meter (newtons)
kilograms	.70.93	poundals
kilograms	. 2.205	pounds
kilograms	.9.842 x 10-4	tons (long)
kilograms	. 1.102 x 10 ^{.3}	tons (short)
kilograms/cubic meter	.0.06243	pounds/ cubic foot
kilograms / sq. meter	9.687 x 10 ^{.5}	atmospheres
kilograms / sq. meter	.0.2048	pounds / square foot
kilogram-calories	3.968	Btu
kilogram-capries	3,088	foot-pounds
kilogram-calories	4,186	joules
kilogram-meters	.9.294 x 10. ³	Btu
kilogram-meters	.7.233	foot-pounds
kilometers	.3,281	feet
kilometers	.0.6214	miles
kilometers/ hour	0.9113	feet/second
kilometers/ hour	0.5396	knots
kilometers /hour	0.6214	miles/ hour
kilowatts	.56.92	Btu / minute
kilowatts 4	.426 x 10 ⁴ ·····	foot-pounds / minute
kilowatts	1.341	horsepower
kilowatt-hours	.3,413	Btu
kilowatt-hours	.2.655 x 10 ⁶	foot-pounds
kilowatt-hours3	.6 x 10 ⁶	joules
knots	.6,080	feet/ hour
knots	.1.8532	kilometers / hour
knots	1.151	miles (statute) / hour
knots	1.689	feet I second
looguos	3.0	miloc
lines of flux/sq.cm	1.0	1111105
lines of flux/sq.crit) 1550	121122223
lines of flux/sq.inch	1.550× 10.9	webers/sa centimator
litore	1.000	cubic centimeters
litore	51.02	
litore	0.2642	
litere/minute	5.886×10^{1}	cubic feet / second
	.000 X 10-4	

Multiply	Ву	To Get
lumens / sq. foot	1.0	foot-candles
lux	.0.0929	foot-candles
maxwells	.10	webers
meters	.3.281	feet
meters	.39.37	inches
meters	.5.396 x 10	miles (nautical)
meters	.6.214 x 10-1	miles (statute)
meters	.1.094	yards
meters Isecond	3.6	kilometers / hour
meters/second	.2.237	miles /hour
meter-kilograms	9.807 x 10 ⁷	centimeter-dynes
meter-kilograms	.7.233	pound-feet
miles (nautical)	6,076.103	.feet
miles (nautical)	1.852	.kilometers
miles (nautical)	1.1508	miles (statute)
miles (statute)	.5,280	.feet
miles (statute)	1.609	kilometers
miles (statute)	0.8689	.miles(nautical)
miles (statute)	1,760	.yards
miles/hour	1.467	feet I second
miles/hour	1.609	kilometers/ hour
miles/ hour	0.8684	knots
millimeters	3.281 x 10-3	.feet
millimeters	.0.03937	inches.
mils	2.54 x 10 ⁻³	centimeters
mils	0.001	inches
minutes (angular)	.0.01667	.degrees
minutes (angular)	.1.852 x 10	.quadrants
minutes (angular)2.	.909 x 10 <	rad ians
ounces	. 16.0	.drams
ounces	. 437.5	.grains
ounces	. 28.3495	.grams
ounces	.0.0625	.pounds
ounces (fluid)	1.805	cubic inches
ounces (fluid)	.0.02957	liters
ounces (troy)	.1.09714	ounces(avoir.)
pint(dry)	.33.60	. cubic inches
pint (liquid)	.0.4732	liters
poundals	.13,826	. dynes
poundals	.14.10	. grams

Multiply	Ву	To Get
poundals	.0.1383	. joules/ meter (newtons)
, poundals	.0.01410	kilograms
, poundals	0.03108	. pounds
, pounds	. 453.5924	. grams
, pounds	4.448	joules / meter (newtons)
pounds	0.4536	kilograms
pounds	16	ounces
pounds	32.17	.poundals
pounds	0.0005	.tons (short)
pounds of water	.0.1198	gallons
pounds/ cubic foot	16.02	. kilograms / cubic meter
pounds/cubic inch	.27.68	grams/cubic centimeter
pounds/ square inch	0.06804	atmospheres
pounds/ square inch	2.307	feet of water
pounds/ square inch	2.036	inches of mercury
quadrants (angular)	90	.degrees
quadrants (angular)	.5,400	minutes
quadrants (angular)	1.571	radians
quarts (liquid)	. 57.75	.cubic inches
quarts (liquid)	.0.9463	liters
radians	57 30	degrees
radians	3 438	minutes
radians	0.6366	quadrants
radians/second	9 549	revolutions/minute
revolutions/ minute	6.0	degrees / second
revolutions/minute	0 1047	radians/second
rods	16.5	feet
1000		
square centimeters	. 1.973 x 10⁵	circular mils
square centimeters	.0.1550	.square inches
square inches	.1.273 x 10 ⁶	circular mils
square inches	6.452	square centimeters
square meters	. 10.76	.square feet
square meters	.1.196	.square yards
square miles	.640	acres
square millimeters	.1,973	.circular mils
square mils	1.273	.circular mils
tone (long)	1.016	lula ara na a
tons (long)	0.040	kilograms
tons (long)	2,240	pounas
tons (metric)	2,205	kilografiis
ions(metric)	∠,∠∪⊃	pounas

Multiply	Ву	To Get
tons (short)	907.185	kilograms
tons (short)	2,000	pounds
watts	3.413	Btu / hour
watts		••.• ergs / second
watts	44.27	foot-pounds / minute
watts	1.341 x 10 ^{,3}	horsepower
watt-hours watt-hours watt-hours webers		Btu foot-pounds kilogram-meters maxwells
webers / sq. inch	1.55 x 10 ⁷	gausses
yards yards	36	inches meters

Notes

1.3 Aircraft Nomenclature

Axes of an Airplane

An airplane in flight is free to rotate about three axes: horizontal, longitudinal and vertical. Each axis is perpendicular to the others and each passes through the center of gravity.

Thethree axes of an aircraft are mutually perpendicular, and all pass through the center of gravity of the aircraft.

Forces Acting on an Aircraft in Flight

In straightand-level, unaccelerated flight the forces about the aircraft center of gravity are balanced. Lift acts upward and is opposed by weight and the aerodynamic tail load which act downward. Thrust acting forward is opposed by drag which acts rearward.

In straight-and-level, unaccelerated flight the forces about the center of gravity are balanced.

Weight

In straight-and-leve, I unaccelerated flight the forces about the center of gravity are balanced.

Type s of Aircraft Structur e Tn ss

A type of structure made up of longitudinal beams and cross braces. Compression loads between the main beams are carried by rigid cross braces called compression struts. Tension loads are carried by stays, or wires, that go from one main beam to the other and cross between the compression struts.

Most fabric-covered wings are constructed with a Pratt truss. The spars are the main beams and the cross braces are the compression struts or compression ribs. The stays are the drag and antidrag wires. The drag wires run from the front spar Inboard to the rear spar outboard, and oppose the drag forces that try to move the wing tips backward. The antidrag wires run from the rear spar inboard to the front spar outboard. They oppose the aerodynamic forces that try to move the wing tips forward.

The Warren truss Is used for the fuselage of most steel tube and fabric aircraft. The main beams are the longerons and the cross braces are steel tube diagonals which carry both compression and tension loads.

Monocoqu

A single-shell that carries all of the flight loads in its outer surface. A chicken egg is a perfect example of a natural monocoque structure.

Metal monocoque aircraft fuselages have a minimum of internal structure, usually with Just formers to provide the shape. Thin sheets of metal (called skins) riveted to the formers provide a rigid, strong, streamlined structure. Dents In the skins destroy the Integrity of a monocoque structure.

Wooden monocoque aircraft structures are similar to those of metal. Thin sheets of aircraft plywood are glued to the formers to provide a strong, lightweight structure.

Modern composite structures are made of resins reinforced with special fabrics and formed in molds or over patterns; these provide a shell sufficiently strong to carry all the flight loads.

Sem imonocoque

Most larger metal aircraft have a semimonocoque structure. This differs from the monocoque by having a series of longerons and stringers between the formers to support the skins and provide additional strength.

1.4 ATA-100 System of Identification

System Sub- syste	Tliie m
21	Air Conditioning
00 10 20 30 40 50 60 70	General Compression Distribution Pressurization Control Heating Cooling Temperature Control Moisture/Air Contaminant Control
22	Auto Flight
00 10 20 30 40	General Auto Pilot Speed/Attitude Correction Auto Throttle System Monitor
23	Communication s
00	General
10	HF VHF/HHF
30	Passenger Addressing and Entertainment
40	Interphone
50	Audio Integrating
60 70	Audio & Video Monitoring
24	Electrial Power
00	General
10	Generator Drive
20	AC Generation
30 40	External Power
50	Elect. Load Distribution

System

Sub- Title system

25 Equipment and Furnishings

- 00 General
- 10 Flight Compartment
- 20 Passenger Compartment
- 30 BuffeVGalley
- 40 Lavatories
- 50 Cargo Compartment
- 60 Emergency
- 70 Accessory Compartments

26 Fire Protection

- 00 General
- 10 Detection
- 20 Extinguishing
- 30 Exp Iosion Suppression

27 Flight Controls

- 00 General
- 10 Aileron & Tab
- 20 ' Rudder/Auddervator & Tab
- 30 Elevator & Tab
- 40 Horiz. Stabllzer/S tabl lator
- 50 Flaps
- 60 Spoilers, Drag Devices & Variable Aerodynamic Fairings
- 70 Gust Lock & Dampener
- 80 Lift Augmenting

28 Fuel

- 00. General
- 10 Storage
- 20 Distribution/Dra in Valves
- 30 Dump
- 40 Indicating

c.		4-	-
31	$^{\prime}s$	те	T
~ ,	-		

Sub- Title system

29 Hydraulic Power

- 00 General
- 10 Main
- 20 Auxiliary
- 30 Indicating

30 Ice and Rain Protection

- 00 General
- 10 Airfoil
- 20 Air Intakes
- 30 Pilot & Static
- 40 Windows & Windshields
- 50 Antennas & Radomes
- 60 Propellers & Rotor
- 70 Water Lines
- 80 Detection

31 Indicating/Recording Systems

- 00 General
- 10 Unassigned
- 20 Unassigned
- 30 Recorders
- 40 Central Computers
- 50 Central WarningSystem

32 Landing Gear

- 00 General
- 10 Main Gear
- 20 Nose Gear/TallGear
- 30 Extension & Retraction, Level Switch
- 40 Wheels & Brakes
- 50 Steering
- 60 Position, Warning & Ground Safety Switch
- 70 Supplementary Gear/Skis, Floats

System

Sub- Title system

33 Lights

- 00 General
- 10 Flight Compartment & Annunciator Panel
- 20 Passenger Compartments
- 30 Cargo & Service Compartment
- 40 ExteriorLighting
- 50 Emergency Lighting

34 Navigation

- 00 General
- 10 Flight Environment Data
- 20 Attitude & Direction
- 30 Landing & Taxi Aids
- 40 Independent Position Determining
- 50 Dependent Position Determining
- 60 Position Computing

35 Oxygen

- 00 General
- 10 Crew
- 20 Passenger
- 30 Portable

36 Pneumatic

- 00 General
 - 10 Distribution
- 20 Indicating

37 Vacuum/Pressure

- 00 General
- 10 Distribution
 - 2.0 Indicating

System Sub- syste	Title
38	Water/Waste
00 10 20 30 40	General Potable Wash Waste Disposal Air Supply
39	Electrical/Electronic Panels and Multi- Purpose Components
0.0	General
10	Instrument & Control Panels
20	Electrical & Electronic Equipment Racks
30	Electrical & Electronic Junction Boxes
40	Multipurpose Electronic Components
50	Integrated Circuits
60	Printed Circuit Card Assemblies
49	Airborne AuxIllary Power
00	General
10	Power Plant
20	Engine
30	Engine Fuel & Control
40	Ignition/Starting
50	Alf Engine Controls
70	Indicating
80	Exhaust
90	Oil
F 1	Chrysoftware

51 Structures

00 General

System Sub-

system

52 Doors

- 00 General
- · 10 Passenger/Crew

Title

- 20 Eme rgency Exit
- 30 Cargo
- 40 Service
- 50 Fixed Interior
- 60 Entrance Stairs
- 70 DoorWarning
- 80 Landing Gear

53 Fuselage

- 00 General
- 10 Main Frame
- 20 Auxiliary Structure
- 30 Plates/Skin
- 40 Attach Fittings
- 50 Aerodynamic Fairings

54 Nacelles/Pylons

- 00 General
- 10 Main Frame
- 20 Auxi liary Structure
- 30 Plates/Skin
- 40 Attach Fittings
- 50 Fillets/Fairings

55 Stabilizers

- 00 General
- 10 Horizontal Stabilizer/ Stabilator
- 20 Elevator/Eleven
- 30 Vertical Stabilizer
- 40 Rudder/Ruddervator
- 50 Attach Fittings

System

Sub- Title system

56 Windows

- 00 General
- 10 Flight Compartment
- 20 Cabin
- 30 Door
- 40 Inspection & Observation

57 Wings

- 00 General
- 10 Main Frame
- 20 Auxiliary Structure
- 30 Plates/Skin
- 40 Attach Fittings
- 50 Flight Surfaces

61 Propellers

- 00 General
- 10 Propeller Assembly
- 20 Controlling
- 30 Braking
- 40 Indicating

65 Rotors

- 00 General
- 10 Main Rotor
- 20 Anti-torque Rotor Assembly
- 30 Accessory Driving
- 40 Controlling
- 50 Braking
- 60 Indicating

71 Powerplant

- 0 General
- 10 Cowling
- 20 Mounts
- 30 Fireseals & Shrouds
- 40 Attach Fittings
- 50 Electrical Harness
- 60 Engine Air Intakes
- 70 Engine Drains

System

Sub- Title system

72(T) Engine TurbInerrurboprop

- 00 General
- 10 Reduction Gear & Shaft Section
- 20 Air Inlet Section
- 30 Compressor Section
- 40 Combustion Section
- 50 Turbine Section
- 60 Accessory Drives
- 70 By-pass Section

72(R) Engine Reciprocating

- 00 General
- 10 Front Section
- 20 Power Section
- 30 Cylinder Section
- 40 Supercharger Section
- 50 Lubrication

73 Engine Fuel and Control

- 00 General
- 10 Distribution
- 20 Controlling/Governing
- 30 Indicating

74 Ignition

- 00 General
- 10 Electrical Power Supply
- 20 Distribution
- 30 Switching

75 Bleed Air

- 00 General
- 10 Engine Anti-Icing
- 20 Engine Cooling
- 30 Compressor Control
- 40 Indicating

System

76 **Engine** Controls

Title ·

- General
- 10 Power Control
- Emergency Shutdown 20

77 **Engine Indicating**

- General
- 10 Power
- Temperature
- 30 Ana lvzers

78 **Engine Exhaust**

- Genera I
- Collec tor/Nozzle
- N oise Suppressor
- 30 Thrust Reverser
- 40 Supp lementary Air

79 **Engine Oli**

- General
- Storage (Dry Sump)
- Distribution
- 30 Indicating

System

Sub-Title svstem

80 Starting

- General
- Cranki ng

Turbines(Reciprocating 81 **Engines**)

- General
- 10 Power Recoverv
- 20 Turbo -supe rcharger

Water InJection 82

- 00 General
- 10 Storage
- Distribution
- 30 Dumping & Purging
- 40 Indicating

83 Remot e Gear Boxes (Engine Driven)

- General
- 10 Drive Shaft Section
- Gearbox Section

Subsvstem

1.5 Aircraft Nationality Identification

Mark	Country
AP	Pakistan
A2	Botswana
A3	Tonga
A40	Oman
A5	Bhutan
A6	United Arab Emfrates
A7	Qatar
A9C	Bahrain
8	China
C, CF	Canada
CC	Chile
CN	Morocco
CP	Bolivia
CR, CS	Portugal
CU	Cuba
ex	Uruguay
C2	Nauru
C5	Gambia
C6	Bahamas
С9	Mozambique
D	Germany
DO	Fiji
02	Angola
04	Cape Verde
EC	Spain
EI, EJ	Ireland
EK	Armenia
EL	Liberia
EP	Iran, Islamic
	Republic of
ER	Republic of Moldova
ES	Estonia
ЕТ	Ethiopia
EW	Belarus
EX	Kyrgyzstan
EY	Tajikistan
EZ	Turkmenistan
E3	Eritrea
F	France
G	United Kingdom

Mark	Country
НА	.Hungary
HB plus national	
emblem	. Switzerland
HB plus	
national	
emblem	.Liechtenstein
HC	.Ecuador
НН	.Haiti
HI	Dominican Republic
НК	.Colombia
HL	Republic of Korea.
НР	.Panama
HR	.Honduras
HS	.Thailand
HZ	. Saudi Arabia
H4	. Solomon Islands
I	.Italy
JA	Japan
JU	.Mongolia
JY	Jordan
J2	. Djibouti
J3	.Grenada
JS	Guinea-Bissau
J6	Saint Lucia
J/	Dominica
J8	Saint Vincent and the
	Grenadines
LN	.Norway
LO, LV	Argentina
LX	Lithuania
Lĭ	Lithuania Pulgaria
LZ	.Duiyana
N	Doru
ОВ	Lebenen
00	
оц Он	Finland
OK	
UR	

(continued)

Mark	Country
OM	Slovakia
00	Belgium
0Y	Denmark
Ρ	Democratic People's
	Republic of Korea
PH	Netherlands
PJ	Netherlands Antilles
PK	Indonesia
PP, PR,	
PT, PU	Brazil
PZ	Suriname
P2	Papua NewGuinea
P4	Aruba (Netherlands)
RA	Russian Federation
RDPL	Lao People's
	Democratic
	Republic
RP	Philippines
SE	Sweden
SP	Poland
ST	Sudan
SU	Egypt
SX	Greece
S2	Bangladesh
SS	Slovenia
S7	Seychelles
\$9	Sao Iome and
TO	Principe
TC	l urkey
1F	
TG	Guatemala
11 T1	Costa Rica
тјті	
□∟	Depublic
TN	Congo
TP	Colligo
те	Tupicio
TT	Chad
TII	Cote d'Ivoire
TV	Renin
Т7	Mali
T7	San Marino
17	Gan Manno

Mark	Country
Т9	Bosnia and
	Herzegovina
UK	Uzbekistan
UN	Kazakhstan
UR•	Ukraine
VH	Australia
VP-A	Anguilla (U.K.)*
VP-B	Bermuda(U.K.)*
VP-C	Cayman Islands
	(U.K.)*
VP-F	Falkland Islands
	(Malvinas) (U.K.)*
VP-G	Gibraltar (U.K.)'
VP-L	Virgin Islands (U.K.)*
VP-M	Montserrat (U.K.)'
VO-H	St. Helena/Ascension
	(U.K.)*
VO-T	Turks and
	Caicos (U.K.)'
VT•	India
V2	Antigua and Barbuda
V3	Belize
V4	Saint Kitts and Nevis
VS	Namibia
VS	 Mi c rone sia,
	Federated States of
V7	Marshall Islands
VS	Brunel Darussalam
XA, XB, XC	Mexico
ХТ	Burkina Faso
XU	Cambodia
XV	Vietnam
XY, XZ	Myanmar
YA	Afghanistan
YI	Iraq
YJ	Vanuatu
YK	Syrian Arab Republic
YL	Latvia
YN	Nicaragua
YR	Romania
YS	El Salvador
YU	Federal Republic of
	Yugoslavia
YV	Venezuela

- -.
| Mark | Country |
|------------|---------------------|
| 2 | Zimbabwe |
| ZK, ZL, ZM | New Zealand |
| ZP | Paraguay |
| ZS, ZT, ZU | South Africa |
| 23 | The former Yugoslav |
| | Republic of |
| | Macedonia |
| 3A | Monaco |
| 38 | Mauritius |
| 3C | Equatorial Guinea |
| 3D | Swaziland |
| 3X | Guinea |
| 4K | Azerbaijan |
| 4L | Georgia |
| 4R | Sri Lanka |
| 4X | Israel |
| 5A | Libyan Arab |
| | Jamahiriya |
| 58 | Cyprus |
| 5H | United Republic |
| | Tanzania |
| 5N | Nigeria |
| 5A | Madagascar |
| 5T | Mauritania |
| SU | Niger |
| 5V | Тодо |
| SW | Samoa |

:t.....

SY	.Kenya
60	.Somalia
6V, 6W	.Senegal
6Y	Jamaica
70	.Yemen
7P	. Lesotho
7QY	.Malawi
7T	Algeria
8P	.Barbados
8Q	.Maldives
8R	Guyana
9A	Croatia
9G	Ghana
9H	.Malta
9J	Zambia
9K	.Kuwait
9L	Sierra Leone
9M	.Malaysia
9N	.Nepal
9Q	.Democratic Republic
	of the Congo
9U	.Burundi
9V	Singapore
9XR	.Rwanda
9Y	Trinidad and Tobago

• (United Kingdom)

1.6 Title 14 of the Code of Fed eral Regulations

The documents in Title 14 of the Code of Federal Regulations (14 CFR), formerly called the Federal Aviation Regulations (FARs), are the actual legal documents that govern civil aircraft operations. Information on the latest regulations is available in Advisory Circular (AC) 00-44 *Status of the Federal Aviation Regulations.* This AC is free and may be ordered from:

U.S. Department of Transportation Subsequent Distribution Office, SVC-121.23 Ardmore East Business Center 3341 Q 75th Ave Landover, MD 20785

Part Title

Subchapter A- Definitions

1 Definitions and abbreviations

Subchapter B- ProceduralRules

- 11 General rulemakingprocedures
- 13 Investigative and enforcement procedures
- 14 Rules Implementing the Equal Access to Justice Act of 1980
- 15 Administrative claims under Federal Tort Claims Act
- 16 Rules of practice for Federally-assisted airport enforcement proceedings

Subchapter C- Alrcraft

- 21 Certificationprocedures for products and parts
- 23 Airworthiness standards: normal, utility, acrobatic, and commuter category airplanes
- 25 Airworthiness standards: transport category airplanes
- 27 Airworthiness standards: normal category rotorcraft
- 29 Airworthinessstandards: transport category rotorcraft
- 31 Airworthiness standards: manned free balloons
- 33 Airworthiness standards: aircraft engines
- 34 Fuel venting and exhaust emission requirements for turbine engine powered airplanes
- 35 Airworthinessstandards: propellers
- 36 Noise standards: aircraft type and airworthiness certification
- 39 Airworthinessdirectives
- 43 Maintenance, preventive maintenance, rebuilding, and alteration

- 45 Identification and registration marking
- 47 Aircraft registration
- 49 Recording of aircraft titles and security documents
- 50-59 [Reserved]

Subchapter D-Airmen

- 60 [Reserve]d
- 61 Certification: Pilots, flight instructors, and ground instructors
- 63 Certification: Flight crewmembers other than pilots
- 65 Certification: Airmen other than flight crewmembers
- 67 Medical standards and certification

Subchapter E-Airspace

- 71 Designation of class A, class **B**, class C, class D, and class **E** airspace areas; airways; routes; and reporting points
- 73 Special use airspace
- 75 [Reserved)
- 77 Objects affecting navigable airspace

Subchapter F- Alr Traffic andGeneral Operating Rules

- 91 General operating and flight rules
- 93 Special air traffic rules and airport traffic patterns
- 95 IFR altitudes
- 97 Standard instrument approach procedures
- 99 Security control of air traffic
- 101 Moored balloons, kites, unmanned rockets and unmanned free balloons
- 103 Ultralight vehicles
- 105 Parachute operations
- 107 Airport security
- 108 Airplane operator security
- 109 Indirect air carrier security

Subchapter G-Air Carriers and Operators for Compensation or Hire: Certification and Operations

- 119 Certification: Air carriers and commercial operators
- 121 Operating requirements: Domestic, flag, and supplemental operations
- 125 Certification and operations: Airplanes having a seating capacity of 20 or more passengers or a maximum payload capacity of 6,000 pounds or more; and rules governing persons on board such aircraft
- 129 Operations: Foreign air carriers and foreign operators of U.S.-registered aircraft engaged in common carriage

- 133 Rotorcraftexternal-load operations
- 135 Operating requirements: Commuter and on-demand operations and rules governing persons on board such aircraft
- 137 Agricultural aircraft operations
- 139 Certification and operations: Land airports serving certain air carriers

Subchapter H- Schools and Other Certificated Agencies

- 140 [Reserved)
- 141 Pilot schools
- 142 Training centers
- 143 [Reserved)
- 145 Repair stations
- 147 Aviation maintenance technician schools

Subchapter I- Airports

- 150 Airport noise compatibility planning
- 151 Federal aid to airports
- 152 Airport aid program
- 155 Release of airport property from surplus property disposal restrictions
- 156 State block grant pilot program
- 157 Notice of construction, alteration, activation, and deactivation of airports
- 158 Passenger facility charges (PFCs)
- 161 Notice and approval of airport noise and access restrictions
- 169 Expenditure of Federal funds for nonmilitary airports or air navigation facilities thereon

Subchapter J- NavigationalFacilities

- 170 Establishment and discontinuance criteria for air traffic control services and navigational facilities
- 171 Non-Federal navigation facilities

Subchapter K- AdmInIstrative Regulations

- 183 Representatives of the Administrator
- 185 Testimony by employees and production of records in legal proceedings, and service of legal process and pleadings
- 187 Fees
- 189 Use of Federal Aviation Administrationcommunications system
- 191 Protection of sensitive security Information

Subchapters L through M [Reserved]

Subchapter N-War Risk Insurance

198 Aviation insurance

1.7 7 Standard Taxi Signals

1.8 Cylinder Color Code Identifiers

Painted around cylinder base by the holddown nuts or on fins between push rods:

Gray or unpainted	Standard steel barrels
Orange	Chrome plated cylinder barrels
Blue	Nitride hardened cylinder barrels
Green	Steel cylinder 0.010 oversize
Yellow	Steel cylinder 0.020 oversize
White	Rebarreled cylinder
Platinum	CermINil® cylinder barrels
Two orange bands	CermiChrome cylinder barrels

Section 2: Physical and Chemical

	Periodic Table of Elements	Page 30		
2.1	Temperature Conversion	Page 31		
2.2	ICAO Standard Atmosphere	Page 37	7	
2.3	Distribution of Electrons in the	Chemical E	lements	Page38
2.4	Density of Various Solids and	Liquids	Page41	-
2.5	Hydraulic Relationships F	Page 42		
2.6	Quantity of Liquid in a Drum	Page 44	1	

$\begin{bmatrix} t & p \\ t & f \end{bmatrix}$ Periodic Table of Elements

0 d s	Light	Metals IIA	111B	Heavy Metal s Nonmetals 1 111B IV B VB V1B V1U 1B 11 A VA VIA VIA C								Inert Gases							
1	1 H t.00797			A-Nanb«								2	e						
2	5 6.941 9	4 Be		$= Welg_{11}^{5} = \begin{bmatrix} 6 & 7 & 8 & 9 \\ 10.811 & 1266118 & 14.0067 & 5.9994 & 18.9964 & 12.26666 & 12.266666 & 12.266666 & 12.2666666 & 12.26666666 & 12.266666666 & 12.2666666666 & 12.266666666666666666666666666666666666$									10 Ne 20.179						
3	¹¹ Na	1 Mg 24.305	r	$\begin{array}{c} \text{G}_{\text{foupYa}} \\ \text{G}_{\text{coupYa}} \\ \text{C}_{\text{coupYa}} \\ \text{C}_{$								18 Ar 948							
4	19 K 39.0983	20 Ca 40.08	21 Sc:	22 Ti 47.90 50.	23 V 942	24 Cr 51,996	25 Mn 54.94	26 Fe 55.647	27 Co 58.9332	28 Ni 58.70 63.5	29 Cu 4	30 Zn 66.38	31 Ga 69.72 72	32 Ge .59	33 As 74.9216	34 Se 78.96 79	35 Br 904 83.8	36 Kr	
5	37 Rb 85.47	38 Sr 87.62 88.9	39 y 05	40 Zr 91.22	41 Nb 92906	42 Mo 95.94	43 TC (97)	44 Ru 101.07 10	45 Rh 2.905 10	46 Pd 6.4 107.8	47 Ag 68	48 Cd 112.41	49 In 114.821	50 Sn 18.69 121	51 Sb .75 127,6	52 Te	53 I 126.9045	54 Xe 131.30	
6	⁵⁵ Cs	⁵⁶ Ba	⁵ r La	72 Hf	⁷ 3 Ta	74 W	75 Re	⁷ Ôs	⁷⁷ Ir	⁷ 8 Pt	79 Au	⁸⁰ Hg	⁸¹ T1	82 Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	86 Rn	
7	132.905 87 Fr (223)	137.34 88 Ra 226.02	138.91 59• AC (227)	178.49	180.948	183.85	186.2) arem	1922 ass nu	19!i.09	196.967	200.59	204.37	207.19	208.980	(209)	(210)	<=	

Atomic weightsin () aremass numbers of most stable isotope of that element

Rare Earth	Lathanide Series	58 Ce 14().12	59 Pr 140.907	60 Nd 144.24	61 Pm (145)	62 Sm 150-35	63 Eu ^{151.96}	64 Gd 157.25	65 Tb 158.925	66 Dy 182.50	67 Ho 164.900	68 Er 16726	69 Tm 168.934	70 Yb 173.04	71 Lu 174.97
Elements	Actinide Series	90 Th 232.038	91 Pa 231.0359	92 U 238.0S	93 Np 237.0,182	94 Pu (2)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (2541	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (260)

2.1 Temperature Conversion

To convert between the temperature scales, use these formulas:

Fahrenheit to Celsius:

$$^\circ F$$
 = 1.8 x $^\circ C$ + 32 or

Celsius to Fahrenheit:

oc;
$$\frac{\circ F - 32}{1.8}$$

or
 $_{\circ}C = 5(^{\circ}F - 32)$

For interpolation, $1^{\circ}C = 1.8^{\circ}F$

OC	+ OF IOC-	OF	OC	+ OF OC-	OF
70.0	400	4.40.0			
-13.3	-100	-148.0	-23.3	-10	14.0
-70.6	-95	-139.0	-20.6	-5	23.0
-67.8	-90	-130.0	-18.3	-1	30.2
-65.0	-85	-121.0	-17.8	0	32.0
-62.2	-80	-112.0	-17.2	1	33.8
-59.4	-75	-103.0	-16.7	2	35.6
-56.7	-70	-94.0	-16.1	3	37.4
-53.9	-65	-85.0	-15.6	4	39.2
-51.1	-60	-76.0	-15.0	5	41.0
-48.3	-55	-67.0	-14.4	6	42.8
-45.6	-50	-58.0	-13.9	7	44.6
-42.8	-45	-49.0	-13.3	8	46.4
-40.0	-40	-40.0	-12.8	9	48.2
-37.2	-35	-31.0	-12.2	10	50.0
-34.4	-30	-2.2.0	-11.7	11	51.8
-31.7	-25	-13.0	-11.1	12	53.6
-28.9	-20	-4.0	-10.6	13	55.4
-26.1	-15	5.0	-10.0	14	57.2

·с	°F ·c	۰F	٠C	°R° -	۰F
-9.4	15	59.0	14.4	58	136.4
-8.9	16	60.8	15.0	59	138.2
-8.3	17	62.6	15.6	60	140.0
-7.8	18	64.4	16.1	61	141.8
-7.2	19	66.2	16.7	62	143.6
-6.7	20	68.0	17.2	63	145.4
-6.1	21	69.8	17.8	64	147.2
-5.6	22	71.6	18.3	65	149.0
-5.0	23	73.4	18.9	66	150.8
-4.4	24	75.2	19.4	67	152.6
-3.9	25	77.0	20.0	68	154.4
-3.3	26	78.8	20.6	69	156.2
-2.8	27	80.6	21.1	70	158.0
-2.2	28	82.4	21.7	71	159.8
-1.7	29	84.2	22.2	72	161.6
-1.1	30	86.0	22.8	73	163.4
.0.6	31	87.8	23.3	74	165.2
0.0	32	89.6	23.9	75	167.0
0.6	33	91.4	24.4	76	168.8
1.1	34	93.2	25.0	77	170.6
1.7	35	95.0	25.6	78	172.4
2.2	36	96.8	26.1	79	174.2
2.8	37	98.6	26.7	80	176.0
3.3	38	100.4	27.2	81	177.8
3.9	39	102.2	27.8	82	179.6
4.4	40	104.0	28.3	83	181.4
5.0	41	105.8	28.9	84	183.2
5.6	42	107.6	29.4	85	185.0
6.1	43	109.4	30.0	86	186.8
• 6.7	44	111.2	30.6	87	188.6
7.2	45	113.0	31.1	88	190.4
/.8	40	114.8	31.7	89	192.2
0.0	47	110.0	32.2	90	194.0
0.9	40	110.4	32.0	91	193.0
10.0	49	120.2	22.0	92	197.0
10.0	51	122.0	33.9 34.4	93	201.2
11.1	52	125.6	35.0	24 05	201.2
11.1	53	123.0	35.0	96	203.0
12.2	54	127.4	36.1	90	204.0
12.8	55	131.0	36.7	98	200.0
13.3	56	132.8	37.2	99	210.2
13.9	57	134.6	37.8	100	212.0

OC	- OF oc	OF	OC	- OFloc	OF	
38.3	101	213.8	62.2	144	291.2	
38.9	102	215.6	62.8	145	293.0	
39.4	103	217.4	63.3	146	294.8	
40.0	104	219.2	63.9	147	296.6	
40.6	105	221.0	64.4	148	298.4	_
41.1	106	222.8	65.0	149	300.2	
41.7	107	224.6	65.6	150	302.0	
42.2	108	226.4	66.1	151	303.8	
42.8	109	228.2	66.7	152	305.6	
43.3	110	230.0	67.2	153	307.4	
43.9	111	231.8	67.8	154	309.2	
44.4	112	233.6	68.3	155	311.0	
45.0	113	235.4	68.9	156	312.8	
45.6	114	237.2	69.4	157	314.6	
46.1	115	239.0	70.0	158	316.4	
46.7	116	240.8	70.6	159	318.2	
47.2	117	242.6	71.1	160	320.0	
47.8	118	244.4	71.7	161	321.8	
48.3	119	246.2	72.2	162	323.6	
48.9	120	248.0	72.8	163	325.4	
49.4	121	249.8	73.3	164	327.2	
50.0	122	251.6	73.9	165	329.0	
50.6	123	253.4	74.4	166	330.8	
51.1	124	255.2	75.0	167	332.6	
51.7	125	257.0	75.6	168	334.4	
52.2	126	258.8	76.1	169	336.2	
52.8	127	260.6	76.7	170	338.0	
53.3	128	262.4	77.2	171	339.8	
53.9	129	264.2	77.8	172	341.6	
54.4	130	266.0	78.3	173	343.4	
55.0	131	267.8	78.9	174	345.2	
55.6	132	269.6	79.4	175	347.0	
56.1	133	271.4	80.0	176	348.8	
56.7	134	273.2	80.6	177	350.6	
57.2	135	275.0	81.1	178	352.4	
57.8	136	276.8	81.7	179	354.2	
58.3	137	278.6	82.2	180	356.0	
58.9	138	280.4	82.8	181	357.8	
59.4	139	282.2	83.3	182	359.6	
60.0	140	284.0	83.9	183	361.4	
60.6	141	285.8	84.4	184	363.2	
61.1	142	287.6	85.0	185	365.0	
61.7	143	289.4	85.6	186	366.8	

86.1 187 368.6 132.2 270 518.0 86.7 188 370.4 135.0 275 527.0 87.2 189 372.2 137.8 280 536.0 87.8 190 374.0 140.6 285 545.0 88.3 191 375.8 143.3 290 554.0 88.9 192 377.6 146.1 295 563.0 90.0 194 381.2 154.4 310 590.0 90.6 195 383.0 160.0 320 608.0 91.7 197 386.6 171.1 340 644.0 92.2 198 388.4 176.7 350 662.0 92.8 199 390.2 182.2 360 680.0 93.3 200 392.0 187.8 370 698.0 93.9 201 393.8 193.3 380 716.0 94.4 202 395.6 198.9 390 734.0 95.0 203 397.4 204.4 400 752.0 95.6 204 399.2 210.0 410 770.0 96.7 206 402.8 221.1 430 806.0 97.2 207 404.6 226.7 440 824.0 97.8 209 408.2 237.8 460 860.0 98.9 210 410.0 243.3 470 878.0 99.4 211	۰C	°FI·c+	• F	- C	- •FI•C•+	+ F
86.7 188 370.4 135.0 275 527.0 87.2 189 372.2 137.8 280 536.0 87.8 190 374.0 140.6 285 545.0 88.3 191 375.8 143.3 290 554.0 88.9 192 377.6 146.1 295 563.0 89.4 193 379.4 148.9 300 572.0 90.0 194 381.2 154.4 310 590.0 90.6 195 383.0 160.0 320 608.0 91.1 196 384.8 165.6 330 626.0 91.7 197 386.6 171.1 340 644.0 92.2 198 388.4 176.7 350 662.0 93.3 200 392.0 187.8 370 698.0 93.3 201 393.8 193.3 380 716.0 94.4 202 395.6 198.9 390 734.0 95.6 204 399.2 210.0 410 770.0 95.6 204 399.2 210.0 410 770.0 97.2 207 404.6 226.7 440 824.0 97.2 207 404.6 226.7 440 824.0 97.2 207 404.6 226.7 440 824.0 97.2 207 404.6 226.7 440 860.0 98.9 210	86.1	187	368.6	132.2	270	518.0
87.2 189 372.2 137.8 280 536.0 87.8 190 374.0 140.6 285 545.0 88.3 191 375.8 143.3 290 554.0 88.9 192 377.6 146.1 295 563.0 89.4 193 379.4 148.9 300 572.0 90.0 194 381.2 154.4 310 590.0 90.6 195 383.0 160.0 320 608.0 91.1 196 384.8 165.6 330 626.0 91.7 197 386.6 171.1 340 644.0 92.2 198 388.4 176.7 350 662.0 93.3 200 392.0 187.8 370 698.0 93.3 200 392.0 187.8 370 698.0 93.9 201 393.8 193.3 380 716.0 94.4 202 395.6 198.9 390 734.0 95.0 203 397.4 204.4 400 752.0 95.6 204 399.2 210.0 410 770.0 96.7 206 402.8 221.1 430 806.0 97.2 207 404.6 226.7 440 824.0 97.8 208 406.4 232.2 450 842.0 98.3 209 408.2 237.8 460 860.0 99.4 211	86.7	188	370.4	135.0	275	527.0
87.8190 374.0 140.6285545.0 88.3 191 375.8 143.3290554.0 88.9 192 377.6 146.1295563.0 89.4 193 379.4 148.9300572.0 90.0 194 381.2 154.4310590.0 90.6 195383.0160.0320608.0 91.1 196384.8165.6330626.0 91.7 197386.6171.1340644.0 92.2 198388.4176.7350662.0 92.8 199390.2182.2360680.0 93.3 200392.0187.8370698.0 93.9 201393.8193.3380716.0 94.4 202395.6198.9390734.0 95.0 203397.4204.4400752.0 95.6 204399.2210.0410770.0 96.7 206402.8221.1430806.0 97.2 207404.6226.7440824.0 97.8 208406.4232.2450842.0 98.3 209408.2237.8460860.0 99.4 211411.8248.9480896.0 100.0 213415.4260.0500932.0 101.1 214417.2265.6510950.0 102.2 216420.8 <td>87.2</td> <td>189</td> <td>372.2</td> <td>137.8</td> <td>280</td> <td>536.0</td>	87.2	189	372.2	137.8	280	536.0
88.3191375.8143.3290554.0 88.9 192377.6146.1295563.0 89.4 193379.4148.9300572.0 90.0 194381.2154.4310590.0 90.6 195383.0160.0320608.0 91.1 196384.8165.633062.0 91.7 197386.6171.1340644.0 92.2 198388.4176.7350662.0 92.8 199390.2182.2360680.0 93.3 200392.0187.8370698.0 93.9 201393.8193.3380716.0 94.4 202395.6198.9390734.0 95.0 203397.4204.4400752.0 95.6 204399.2210.0410770.0 96.7 206402.8221.1430886.0 97.2 207404.6226.7440824.0 97.8 208406.4232.2450842.0 98.3 209408.2237.8460860.0 98.9 210410.0243.3470878.0 99.4 211411.8248.9480896.0 100.0 213415.4260.0500932.0 101.1 214417.2265.6510950.0 101.7 215419.0271.1<	87.8	190	374.0	140.6	285	545.0
88.9 192 377.6 146.1 295 563.0 89.4 193 379.4 148.9 300 572.0 90.0 194 381.2 154.4 310 590.0 90.6 195 383.0 160.0 320 608.0 91.1 196 384.8 165.6 330 626.0 91.7 197 386.6 171.1 340 644.0 92.2 198 388.4 176.7 350 662.0 92.8 199 390.2 182.2 360 680.0 93.3 200 392.0 187.8 370 698.0 93.9 201 393.8 193.3 380 716.0 94.4 202 395.6 198.9 390 734.0 95.0 203 397.4 204.4 400 752.0 95.6 204 399.2 210.0 410 770.0 96.7 206 402.8 221.1 430 806.0 97.2 207 404.6 226.7 440 824.0 98.3 209 408.2 237.8 460 860.0 98.9 210 410.0 243.3 470 878.0 99.4 211 411.8 248.9 480 896.0 100.6 213 415.4 260.0 500 932.0 101.1 214 417.2 265.6 510 950.0 102.2 216 <	88.3	191	375.8	143.3	290	554.0
89.4 193 379.4 148.9 300 572.0 90.0 194 381.2 154.4 310 590.0 90.6 195 383.0 160.0 320 608.0 91.1 196 384.8 165.6 330 626.0 91.7 197 386.6 171.1 340 644.0 92.2 198 388.4 176.7 350 662.0 92.8 199 390.2 182.2 360 680.0 93.3 200 392.0 187.8 370 698.0 93.9 201 393.8 193.3 380 716.0 94.4 202 395.6 198.9 390 734.0 95.0 203 397.4 204.4 400 752.0 95.6 204 399.2 210.0 410 770.0 96.7 206 402.8 221.1 430 806.0 97.2 207 404.6 226.7 440 824.0 98.3 209 408.2 237.8 460 860.0 98.9 210 410.0 243.3 470 87.0 99.4 211 411.8 248.9 480 896.0 100.0 212 413.6 254.4 490 914.0 10.1 214 417.2 265.6 510 95.0 102.2 216 420.8 276.7 530 986.0 102.2 216 <td< td=""><td>88.9</td><td>192</td><td>377.6</td><td>146.1</td><td>295</td><td>563.0</td></td<>	88.9	192	377.6	146.1	295	563.0
90.0 194 381.2 154.4 310 590.0 90.6 195 383.0 160.0 320 608.0 91.1 196 384.8 165.6 330 626.0 91.7 197 386.6 171.1 340 644.0 92.2 198 388.4 176.7 350 662.0 92.8 199 390.2 182.2 360 680.0 93.3 200 392.0 187.8 370 698.0 93.9 201 393.8 193.3 380 716.0 94.4 202 395.6 198.9 390 734.0 95.0 203 397.4 204.4 400 752.0 95.6 204 399.2 210.0 410 770.0 96.7 206 402.8 221.1 430 806.0 97.2 207 404.6 226.7 440 824.0 97.8 208 406.4 232.2 450 842.0 98.3 209 408.2 237.8 460 860.0 98.9 210 410.0 243.3 470 878.0 99.4 211 411.8 248.9 480 896.0 100.0 212 413.6 254.4 490 914.0 102.2 216 420.8 276.7 530 986.0 102.2 216 420.8 276.7 530 986.0 102.2 216	89.4	193	379.4	148.9	300	572.0
90.6 195 383.0 160.0 320 608.0 91.1 196 384.8 165.6 330 626.0 91.7 197 386.6 171.1 340 644.0 92.2 198 388.4 176.7 350 662.0 92.8 199 390.2 182.2 360 680.0 93.3 200 392.0 187.8 370 698.0 93.9 201 393.8 193.3 380 716.0 94.4 202 395.6 198.9 390 734.0 95.0 203 397.4 204.4 400 752.0 95.6 204 399.2 210.0 410 770.0 96.7 206 402.8 221.1 430 806.0 97.2 207 404.6 226.7 440 824.0 97.8 208 406.4 232.2 450 842.0 98.3 209 408.2 237.8 460 860.0 99.4 211 411.8 248.9 480 896.0 100.0 212 413.6 254.4 490 914.0 102.2 216 420.8 276.7 530 986.0 102.2 216 420.8 276.7 530 986.0 102.2 216 422.6 282.2 540 1004.0 103.3 218 424.4 287.8 550 1022.0 103.9 219 <	90.0	194	381.2	154.4	310	590.0
91.1 196 384.8 165.6 330 626.0 91.7 197 386.6 171.1 340 644.0 92.2 198 388.4 176.7 350 662.0 92.8 199 390.2 182.2 360 680.0 93.3 200 392.0 187.8 370 698.0 93.9 201 393.8 193.3 380 716.0 94.4 202 395.6 198.9 390 734.0 95.0 203 397.4 204.4 400 752.0 95.6 204 399.2 210.0 410 770.0 96.7 206 402.8 221.1 430 806.0 97.2 207 404.6 226.7 440 824.0 97.8 208 406.4 232.2 450 842.0 98.3 209 408.2 237.8 460 860.0 98.9 210 410.0 243.3 470 878.0 99.4 211 411.8 248.9 480 896.0 100.6 213 415.4 260.0 500 932.0 101.7 215 419.0 271.1 520 968.0 102.2 216 422.8 276.7 530 986.0 102.2 216 420.8 276.7 530 986.0 102.2 216 422.6 298.9 570 1004.0 103.3 218 </td <td>90.6</td> <td>195</td> <td>383.0</td> <td>160.0</td> <td>320</td> <td>608.0</td>	90.6	195	383.0	160.0	320	608.0
91.7 197 386.6 171.1 340 644.0 92.2 198 388.4 176.7 350 662.0 92.8 199 390.2 182.2 360 680.0 93.3 200 392.0 187.8 370 698.0 93.9 201 393.8 193.3 380 716.0 94.4 202 395.6 198.9 390 734.0 95.0 203 397.4 204.4 400 752.0 95.6 204 399.2 210.0 410 770.0 96.1 205 401.0 215.6 420 788.0 96.7 206 402.8 221.1 430 806.0 97.2 207 404.6 226.7 440 824.0 97.8 208 406.4 232.2 450 842.0 98.3 209 408.2 237.8 460 860.0 98.9 210 410.0 243.3 470 878.0 99.4 211 411.8 248.9 480 896.0 100.6 213 415.4 260.0 500 932.0 101.1 216 420.8 276.7 530 986.0 102.2 216 420.8 276.7 530 986.0 102.2 216 420.8 276.7 530 986.0 102.8 217 422.6 282.2 540 1004.0 103.3 218 </td <td>91.1</td> <td>196</td> <td>384.8</td> <td>165.6</td> <td>330</td> <td>626.0</td>	91.1	196	384.8	165.6	330	626.0
92.2 198 388.4 176.7 350 662.0 92.8 199 390.2 182.2 360 680.0 93.3 200 392.0 187.8 370 698.0 93.9 201 393.8 193.3 380 716.0 94.4 202 395.6 198.9 390 734.0 95.0 203 397.4 204.4 400 752.0 95.6 204 399.2 210.0 410 770.0 96.7 206 402.8 221.1 430 806.0 97.2 207 404.6 226.7 440 824.0 97.8 208 406.4 232.2 450 842.0 98.3 209 408.2 237.8 460 860.0 98.9 210 410.0 243.3 470 878.0 99.4 211 411.8 248.9 480 896.0 100.0 212 413.6 254.4 490 914.0 102.2 216 420.8 276.7 530 986.0 102.2 216 420.8 276.7 530 986.0 102.2 216 420.8 276.7 530 986.0 102.2 216 422.6 293.3 560 1004.0 103.3 218 424.4 287.8 550 1022.0 103.9 219 426.2 293.3 560 1040.0 104.4 22	91.7	197	386.6	171.1	340	644.0
92.8 199 390.2 182.2 360 680.0 93.3 200 392.0 187.8 370 698.0 93.9 201 393.8 193.3 380 716.0 94.4 202 395.6 198.9 390 734.0 95.0 203 397.4 204.4 400 752.0 95.6 204 399.2 210.0 410 770.0 96.1 205 401.0 215.6 420 788.0 96.7 206 402.8 221.1 430 806.0 97.2 207 404.6 226.7 440 824.0 97.8 208 406.4 232.2 450 842.0 98.3 209 408.2 237.8 460 860.0 98.9 210 410.0 243.3 470 878.0 99.4 211 411.8 248.9 480 896.0 100.0 212 413.6 254.4 490 914.0 100.6 213 415.4 260.0 500 932.0 101.1 216 420.8 276.7 530 986.0 102.2 216 420.8 276.7 530 986.0 102.8 217 422.6 282.2 540 1004.0 103.3 218 424.4 287.8 550 1022.0 103.9 219 426.2 298.9 570 1058.0 104.4 22	92.2	198	388.4	176.7	350	662.0
93.3 200 392.0 187.8 370 698.0 93.9 201 393.8 193.3 380 716.0 94.4 202 395.6 198.9 390 734.0 95.0 203 397.4 204.4 400 752.0 95.6 204 399.2 210.0 410 770.0 96.1 205 401.0 215.6 420 788.0 96.7 206 402.8 221.1 430 806.0 97.2 207 404.6 226.7 440 824.0 97.8 208 406.4 232.2 450 842.0 98.3 209 408.2 237.8 460 860.0 98.9 210 410.0 243.3 470 878.0 99.4 211 411.8 248.9 480 896.0 100.0 212 413.6 254.4 490 914.0 101.1 214 417.2 265.6 510 950.0 101.7 215 419.0 271.1 520 968.0 102.2 216 420.8 276.7 530 986.0 102.8 217 422.6 282.2 540 1004.0 103.3 218 424.4 287.8 550 1022.0 103.9 219 426.2 293.3 560 1040.0 104.4 220 428.0 298.9 570 1058.0 107.2	92.8	199	390.2	182.2	360	680.0
93.9 201 393.8 193.3 380 716.0 94.4 202 395.6 198.9 390 734.0 95.0 203 397.4 204.4 400 752.0 95.6 204 399.2 210.0 410 770.0 96.1 205 401.0 215.6 420 788.0 96.7 206 402.8 221.1 430 806.0 97.2 207 404.6 226.7 440 824.0 97.8 208 406.4 232.2 450 842.0 98.3 209 408.2 237.8 460 860.0 98.9 210 410.0 243.3 470 878.0 99.4 211 411.8 248.9 480 896.0 100.0 212 413.6 254.4 490 914.0 101.1 214 417.2 265.6 510 950.0 101.7 215 419.0 271.1 520 968.0 102.2 216 420.8 276.7 530 986.0 102.8 217 422.6 282.2 540 1004.0 103.3 218 424.4 287.8 550 1022.0 103.9 219 426.2 293.3 560 1040.0 104.4 220 428.0 298.9 570 1058.0 107.2 225 437.0 304.4 580 1076.0 100.0 <td< td=""><td>93.3</td><td>200</td><td>392.0</td><td>187.8</td><td>370</td><td>698.0</td></td<>	93.3	200	392.0	187.8	370	698.0
94.4 202 395.6 198.9 390 734.0 95.0 203 397.4 204.4 400 752.0 95.6 204 399.2 210.0 410 770.0 96.1 205 401.0 215.6 420 788.0 96.7 206 402.8 221.1 430 806.0 97.2 207 404.6 226.7 440 824.0 97.8 208 406.4 232.2 450 842.0 98.3 209 408.2 237.8 460 860.0 98.9 210 410.0 243.3 470 878.0 99.4 211 411.8 248.9 480 896.0 100.0 212 413.6 254.4 490 914.0 100.6 213 415.4 265.6 510 950.0 101.1 214 417.2 265.6 510 950.0 102.2 216 420.8 276.7 530 986.0 102.8 217 422.6 282.2 540 1004.0 103.3 218 424.4 287.8 550 1022.0 103.9 219 426.2 293.3 560 1040.0 104.4 220 428.0 298.9 570 1058.0 107.2 225 437.0 304.4 580 1076.0 110.0 230 446.0 310.0 590 1094.0	93.9	201	393.8	193.3	380	716.0
95.0 203 397.4 204.4 400 752.0 95.6 204 399.2 210.0 410 770.0 96.1 205 401.0 215.6 420 788.0 96.7 206 402.8 221.1 430 806.0 97.2 207 404.6 226.7 440 824.0 97.8 208 406.4 232.2 450 842.0 98.3 209 408.2 237.8 460 860.0 98.9 210 410.0 243.3 470 878.0 99.4 211 411.8 248.9 480 896.0 100.0 212 413.6 254.4 490 914.0 100.6 213 415.4 265.6 510 950.0 101.1 214 417.2 265.6 510 950.0 102.2 216 420.8 276.7 530 986.0 102.8 217 422.6 282.2 540 1004.0 103.3 218 424.4 287.8 550 1022.0 103.9 219 426.2 293.3 560 1040.0 104.4 220 428.0 298.9 570 1058.0 107.2 225 437.0 304.4 580 1076.0 110.0 230 446.0 310.0 590 1094.0	94.4	202	395.6	198.9	390	734.0
95.6 204 399.2 210.0 410 770.0 96.1 205 401.0 215.6 420 788.0 96.7 206 402.8 221.1 430 806.0 97.2 207 404.6 226.7 440 824.0 97.8 208 406.4 232.2 450 842.0 98.3 209 408.2 237.8 460 860.0 98.9 210 410.0 243.3 470 878.0 99.4 211 411.8 248.9 480 896.0 100.0 212 413.6 254.4 490 914.0 100.6 213 415.4 265.6 510 950.0 101.1 214 417.2 265.6 510 950.0 102.2 216 420.8 276.7 530 986.0 102.8 217 422.6 282.2 540 1004.0 103.3 218 424.4 287.8 550 1022.0 103.9 219 426.2 293.3 560 1040.0 104.4 220 428.0 298.9 570 1058.0 107.2 225 437.0 304.4 580 1076.0 110.0 230 446.0 310.0 590 1094.0	95.0	203	397.4	204.4	400	752.0
96.1 205 401.0 215.6 420 788.0 96.7 206 402.8 221.1 430 806.0 97.2 207 404.6 226.7 440 824.0 97.8 208 406.4 232.2 450 842.0 98.3 209 408.2 237.8 460 860.0 98.9 210 410.0 243.3 470 878.0 99.4 211 411.8 248.9 480 896.0 100.0 212 413.6 254.4 490 914.0 100.6 213 415.4 265.6 510 950.0 101.1 214 417.2 265.6 510 950.0 102.2 216 420.8 276.7 530 986.0 102.8 217 422.6 282.2 540 1004.0 103.3 218 424.4 287.8 550 1022.0 103.9 219 426.2 293.3 560 1040.0 104.4 220 428.0 298.9 570 1058.0 107.2 225 437.0 304.4 580 1076.0 110.0 230 446.0 310.0 590 1094.0	95.6	204	399.2	210.0	410	770.0
96.7 206 402.8 221.1 430 806.0 97.2 207 404.6 226.7 440 824.0 97.8 208 406.4 232.2 450 842.0 98.3 209 408.2 237.8 460 860.0 98.9 210 410.0 243.3 470 878.0 99.4 211 411.8 248.9 480 896.0 100.0 212 413.6 254.4 490 914.0 100.6 213 415.4 260.0 500 932.0 101.1 214 417.2 265.6 510 950.0 102.2 216 420.8 276.7 530 986.0 102.8 217 422.6 282.2 540 1004.0 103.3 218 424.4 287.8 550 1022.0 103.9 219 426.2 293.3 560 1040.0 104.4 220 428.0 298.9 570 1058.0 107.2 225 437.0 304.4 580 1076.0 110.0 230 446.0 310.0 590 1094.0	96.1	205	401.0	215.6	420	788.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	96.7	206	402.8	221.1	430	806.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97.2	207	404.6	226.7	440	824.0
98.3 209 408.2 237.8 460 860.0 98.9 210 410.0 243.3 470 878.0 99.4 211 411.8 248.9 480 896.0 100.0 212 413.6 254.4 490 914.0 100.6 213 415.4 260.0 500 932.0 101.1 214 417.2 265.6 510 950.0 101.7 215 419.0 271.1 520 968.0 102.2 216 420.8 276.7 530 986.0 102.8 217 422.6 282.2 540 1004.0 103.3 218 424.4 287.8 550 1022.0 103.9 219 426.2 293.3 560 1040.0 104.4 220 428.0 298.9 570 1058.0 107.2 225 437.0 304.4 580 1076.0 110.0 230 446.0 310.0 590 1094.0	97.8	208	406.4	232.2	450	842.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	98.3	209	408.2	237.8	460	860.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	98.9	210	410.0	243.3	470	878.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99.4	211	411.8	248.9	480	896.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.0	212	413.6	254.4	490	914.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.6	213	415.4	260.0	500	932.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101.1	214	417.2	265.6	510	950.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101.7	215	419.0	271.1	520	968.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	102.2	216	420.8	276.7	530	986.0
103.3 218 424.4 287.8 550 1022.0 103.9 219 426.2 293.3 560 1040.0 104.4 220 428.0 298.9 570 1058.0 107.2 225 437.0 304.4 580 1076.0 110.0 230 446.0 310.0 590 1094.0	102.8	217	422.6	282.2	540	1004.0
103.9 219 426.2 293.3 560 1040.0 104.4 220 428.0 298.9 570 1058.0 107.2 225 437.0 304.4 580 1076.0 110.0 230 446.0 310.0 590 1094.0	103.3	218	424.4	287.8	550	1022.0
104.4 220 428.0 298.9 570 1058.0 107.2 225 437.0 304.4 580 1076.0 110.0 230 446.0 310.0 590 1094.0	103.9	219	426.2	293.3	560	1040.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	104.4	220	428.0	298.9	570	1058.0
110.0 230 440.0 310.0 390 1094.0	107.2	225	437.0	304.4	580	10/6.0
112.9 225 455.0 215.6 600 1112.0	110.0	230	440.0	215.6	590	1112.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	112.8	235	455.0	221.1	600	1112.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	112.0	240	404.0	321.1	610	1140.0
110.3 243 473.0 320.7 020 1148.0	121.3	243	4/3.0	320.7	620	1148.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	121.1	250	482.0 701.0	332.2 337 Q	640	1100.0
125.7 255 471.0 557.0 040 1184.01267 260 500.0 $3/3.3$ 650 1202.0	125.9	255	471.0 500.0	3/3 2	650	1202.0
129.4 265 509.0 348.9 660 1220.0	129.4	265	509.0	348.9	660	1202.0

٠C	FI-c	OF	۰C	<- °FI⋅c-	OF
354.4	670	1238.0	648.9	1200	2192.0
360.0	680	1256.0	660.0	1220	2228.0
365.6	690	1274.0	671.1	1240	2264.0
371.1	700	1292.0	682.2	1260	2300.0
376.7	710	1310.0	693.3	1280	2336.0
382.2	720	1328.0	704.4	1300	2372.0
387.8	730	1346.0	715.6	1320	2408.0
393.3	740	1364.0	726.7	1340	2444.0
398.9	750	1382.0	737.8	1360	2480.0
404.4	760	1400.0	748.9	1380	2516.0
410.0	770	1418.0	760.0	1400	2552.0
415.6	780	1436.0	771.1	1420	2588.0
421.1	790	1454.0	782.2	1440	2624.0
426.7	800	1472.0	793.3	1460	2660.0
432.2	810	1490.0	804.4	1480	2696.0
437.8	820	1508.0	815.6	1500	2732.0
443.3	830	1526.0	826.7	1520	2768.0
448.9	840	1544.0	837.8	1540	2804.0
454.4	850	1562.0	848.9	1560	2840.0
460.0	860	1580.0	860.0	1580	2876.0
465.6	870	1598.0	871.1	1600	2912.0
471.1	880	1616.0	882.2	1620	2948.0
476.7	890	1634.0	893.3	1640	2984.0
482.2	900	1652.0	904.4	1660	3020.0
487.8	910	1670.0	915.6	1680	3056.0
493.3	920	1688.0	926.7	1700	3092.0
498 .9	930	1706.0	937.8	1720	3128.0
504.4	940	1724.0	948.9	1740	3164.0
510.0	950	1742.0	960.0	1760	3200.0
515.6	960	1760.0	971.1	1780	3236.0
521.1	970	1778.0	982.2	1800	3272.0
526.7	980	1796.0	993.3	1820	3308.0
532.2	990	1814.0	1004.4	1840	3344.0
537.8	1000	1832.0	1015.6	1860	3380.0
548.9	1020	1868.0	1026.7	1880	3416.0
560.0	1040	1904.0	1037.8	1900	3452.0
571.1	1060	1940.0	1048.9	1920	3488.0
582.2	1080	1976.0	1060.0	1940	3524.0
593.3	1100	2012.0	1071.1	1960	3560.0
604.4	1120	2048.0	1082.2	1980	3596.0
615.6	1140	2084.0	1093.3	2000	3632.0
626.7	1160	2120.0	1104.4	2020	3668.0
8.160	1180	2156.0	1115.6	2040	3/04.0

00	- QFloc -+	0 F	00	- 0Flcc -+	0 F
1126.7	2060	3740.0	1360.0	2480	4496.0
1137.8	2080	3776.0	1371.1	2500	4532.0
1148.9	2100	3812.0	1382.2	2520	4568.0
1160.0	2120	3848.0	1393.3	2540	4604.0
1171.1	2140	3884.0	1404.4	2560	4640.0
1182.2	2160	3920.0	1415.6	2580	4676.0
1193.3	2180	3956.0	1426.7	2600	4712.0
1204.4	2200	3992.0	1437.8	2620	4748.0
1215.6	2220	4028.0	1448.9	2640	4784.0
1226.7	2240	4064.0	1460.0	2660	4820.0
1237.8	2260	4100.0	1471.1	2680	4856.0
1248.9	2280	4136.0	1482.2	2700	4892.0
1260.0	2300	4172.0	1493.3	2720	4928.0
1271.1	2320	4208.0	1504.4	2740	4964.0
1282.2	2340	4244.0	1515.6	2760	5000.0
1293.3	2360	4280.0	1526.7	2780	5036.0
1304.4	2380	4316.0	1537.8	2800	5072.0
1315.6	2400	4352.0	1565.6	2850	5162.0
1326.7	2420	4388.0	1593.3	2900	5252.0
1337.8	2440	4424.0	1621.1	2950	5342.0
1348.9	2460	4460.0	1648.9	3000	5432.0

.

Absolute Temperature

The Kelvin temperature scale uses the same graduations as are used in the Celsius scale. Zero degrees Kelvin (0°K) Is absolute zero, and Is equal to -213 $\cdot c$.

 $^{\circ}K = ^{\circ}C + 273$ and $^{\circ}C = ^{\circ}K - 273$

The Rankine temperature scale uses the same graduations as are used In the Fahrenheit scale. Zero degrees Rankine (0°R) Is absolute zero, and Is equal to -460°F.

```
^{\circ}R = ^{\circ}F + 460
and
^{\circ}F = ^{\circ}R - 460
```

2.2 ICAO Standard Atmosphere

Altitude	Tempe	rature	Pressure	Speed of Sound
Feet	• F.	• <i>C</i>	In. Hg	Knots
-2,000	66.10	19.0	32.15	666.0
-1,000	62.50	17.0	31.01	663.7
0	59.00	15.0	29.92	661.7
1,000	55.43	13.0	28.86	659.5
2,000	51.87	11.0	27.82	657.2
3,000	48.30	9.1	26.82	654.9
4,000	44.74	7.1	25.84	652.6
5,000	41.17	5.1	24.90	650.3
6,000	37.60	3.1	23.98	647.9
7,000	34.04	1.1	23.09	645.6
8,000	30.47	-0.8	22.23	643.3
9,000	26.90	-2.8	21.39	640.9
10,000	23.34	-4.8	20.58	638.6
15,000	5.51	-14.7	16.89	626.7
20,000	-12.32	-24.6	13.75	614.6
25,000	-30.15	-34.5	11.12	602.2
30,000	-47.90	-44.4	8.885	589.5
35,000	-65.82	-54.2	7.041	576.6
*36,089	-69.70	-56.5	6.683	573.8
40,000	-69.70	-56.5	5.558	573.8
45,000	-69.70	-56.5	4.355	573.8
50,000	-69.70	-56.5	3.425	573.8
55,000	-69.70	-56.5	2.693	573.8
60,000	-69.70	-56.5	2.118	573.8
65,000	-69.70	-56.5	1.665	573.8
70,000	-69.70	-56.5	1.310	573.8
75,000	-69.70	-56.5	1.030	573.8
80,000	-69.70	-56.5	0.810	573.8
85,000	-64.80	-53.8	0.637	577.4
90,000	-56.57	-49.2	0.504	583.4
95,000	-48.34	-44.6	0.400	589.3
100,000	-40.11	-40.1	0.320	595.2

*Geopotential of the tropopause

2.3 Distribution of Electrons in the Chemical Elements

Atomic	Element	Symbol	Atomic			S	hells	5	
Number			Weight	k		m	n	0	рq
1	Hydrogen	Н	1.00797	1					
2	Helium	He	4.0026	2					
3	Lithium	Li	6.941	2	1				
4	Beryllium	Be	9.0122	2	2				
5	Boron	В	10.811	2	3				
6	Carbon	С	12.01115	2	4				
7	Nitrogen	N	14.0067	2	5				
8	Oxygen	0	15.9994	2	7				
9	Fluorine	F	18.9984	2	7				
10	Neon	Ne 20	.179 2 8						
11	Sodium	Na 22	.9898281						
12	Magnesium	Mg	24.305	2	8	2			
13	Aluminum	Al	26.9815 2	283					
14	Silicon	Si	28.086	2	8	4			
15	Phosphorus	р	30.9736	2	8	5			
16	Sulfur	S	32.064	2	8	6			
17	Chlorine	CI	35.453	2	8	7			
18	Argon	Ar	39.948	2	8	8			
19	Potassium	K	39.0983	2	8	8	1		
20	Calcium	Ca	40.08	2	88	2			
21	Scandium	Sc 44	.9562892	2					
22	Titanium	Ti	47.90	2	8	10	2		
23	Vanadium	V	50.942	2	8	11	2		
24	Chromium	Cr	51.996	2	8	13	1		
25	Manganese	Mn	54.94	2	8	13	2		
26	Iron	Fe	55.847	2	8	14	2		
27	Cobalt	Co	58.9332	2	8	15	2		
28	Nickel	Ni	58.70	2	8	16	2		
29	Copper	Cu	63.54	2	8	18	1		
30	Zinc	Zn	65.38	2	8	18	2		
31	Gallium	Ga	69.72	2	8	18	3		
32	Germanium	Ge	72.59	2	8	18	4		
33	Arsenic	As	74.9216	2	8	18	5		
34	Selenium	Se	78.96	2	8	18	6		
35	Bromine	Br	79.904	2	8	18	7		
36	Krypton	Kr	83.80	2	8	18	8		
37	Rubidium	Rb	85.4678	2	8	18	8	1	
38	Strontium	Sr	87.62	2	8	18	8	2	
39	Yttrium	У	88.905	2	8	18	9	2	

Atomi c	Elem ent	Sy mbol	Ato mic			S	Sh ell	5	
Number			Wei ght k	k I m n	0 p	q			
40	Zirconium	Zr	91.22	2	8	18	10	2	
41	Niobium	Nb	92.906	2	8	18	12	1	
42	Molybdenum	Mo 95.94	1281813	3 1					
43	Technetium	Тс	(97)	2	8 1	18 1	4 1	44	
Ruthen	ium	Ru	101.07	2	8	18	15	1	
45	Rhodium	Rh	102.905	2	8	18	16	1	
46	Palladium	Pd	106.4	2	8	18	18	0	
47	Silver	Ag	107.868	2	8	18	18	1	
48	Cadmium	Cd	112.41	2	8	18	18	2	
49	Indium	In	114.82	2	8	18	18	3	
50	Tin	Sn	118.69	28	1	8 18	34	51	
Antimo	пy	Sb	121.75	28	18	3 18	3 5	52	
Telluriu	m	Те	127.60	2	8	18	18	6	
53	lodine	1	126.9045	2	8	18	18	7	
54	Xenon	Xe 13	31.30 2 8 1	18 18	8	4.0	4.0	-	
22 56	Cesium	CS Ro	132.905	2	8	18	18	8	1
57	Lanthanum	Da	129.01	2	0	10	10	8	2
58	Cerium	La	1/0.12	2	0	10	10	9	2
50	Prasoodymiur	n Dr	140.12	2	0	10	20	ð	2
60	Neodymium	Nd	140.907	2	0	10	21	0	2
61	Promethium	Pm	(145)	2	8	18	22	0	2
62	Samarium	Sm	150 35	2	8	18	24	8	2
63	Europium	Fu	151.00	2	8	18	25	8	2
64	Gadolinium	Gd	157.25	2	8	18	25	g	2
65	Terbium	Th	158.925	2	8	18	27	8	2
66	Dvsprosium	Dv	162.50	2	8	18	28	8	2
67	Holmium	Ho	164.930	2	8	18	29	8	2
68	Erbium	Er	167.26	2	8	18	30	8	2
69	Thulium	Tm	168.934	2	8	18	31	8	2
70	Ytterbium	Yb	173.04	2	8	18	32	8	2
71	Lutetium	Lu	174.97	2	8	18	32	9	2
72	Hafnium	Hf	178.49	2	8	18	32	10	2
73	Tantalum	Та	180.948	2	8	18	32	11	2
74	Tungsten	W	183.85	2	8	18	32	12	2
75	Rhenium	Re	186.2	2	8	18	32	13	2
76	Osmium	Os	190.2	2	8	18	32	14	2
п	Iridium	lr	192.2	2	8	18	32	17	0
78	Platinum	Pt	195.09	2	8	18	32	17	1
79	Gold	Au	196.967	2	8	18	32	18	1
80	Mercury	Hg	200.59	2	8	18	32	18	2
81	Thallium	ΤI	204.37	2	8	18	32	18	3
82	Lead	Pb	207.19	2	8	18	32	18	4

T

Atomic	Element	Symbol	Atomic			S	Shell	s		
Number			Weight	k		m	n	0	р	q
83	Bismuth	Bi	208.980	2	8	18	32	18	5	
84	Polonium	Po	(209)	2	8	18	32	18	6	
85	Astatine	At	(210)	2	8	18	32	18	7	
86	Radon	Rn	(222)	2	8	18	32	18	8	
87	Francium	Fr	(223)	2	8	18	32	18	8	1
88	Radium	Ra	226.02	2	8	18	32	18	8	2
89	Actinium	Ac	(227)	2	8	18	32	18	9	2
90	Thorium	Th	232.038	2	8	18	32	18	10	2
91	Protactinium	Pa	231.0359	2	8	18	32	20	9	2
92	Uranium	u	238.03	2	8	18	32	21	9	2
93	Neptunium	Np	237.0482	2	8	18	32	22	9	2
94	Plutonium	Pu	(244)	2	8	18	32	23	9	2
95	Americium	Am	(243)	2	8	18	32	24	9	2
96	Curium	Cm	(247)	2	8	18	32	25	9	2
97	Berkelium	Bk	(247)	2	8	18	32	26	9	2
98	Californium	Cf	(251)	2	8	18	32	27	9	2
99	Einsteinium	Es	(254)	2	8	18	32	28	9	2
100	Fermium	Fm	(257)	2	8	18	32	29	9	2
101	Mendelvium	Md	(258)	2	8	18	32	30	9	2
102	Nobelium	No	(259)	2	8	18	32	31	9	2
103	Lawrencium	Lr	(262)	2	8	18	32	32	9	2

Values in parentheses give the atomic mass number of the isotope of longest half-life.

2.4 Density of Various Solids and Liquids

Substance	Specific Gravity	Pounds/ Cubic Foot	Pounds/ Gallon
Cork	0.22	13.7	
Gasoline	0.72	44.9	6.02
JP-4	0.79	49.0	6.60
Alcohol (methyl)	0.81	50.5	6.76
JP-5	0.82	51.2	6.84
Kerosine	0.82	51.2	6.84
Oil (Petroleum)	0.89	55.5	7.43
Ice	0.92	57.4	
Oil (Synthetic)	0.93	58.0	7.76
Water (fresh)	1.00	62.4	8.35
Water (sea)	1.03	64.3	8.60
Ethylene Glycol	1.12	69.9	9.35
Sugar	1.59	99.2	
Carbon Tetrachloride	1.60	99.8	13.36
Magnesium	1.74	108.6	
Salt	2.18	136.0	
Aluminum	2.70	168.5	
Zinc	7.10	443.0	
Steel	7.83	488.6	
Iron	7.90	493.0	
Brass	8.65	539.8	
Copper	8.95	558.5	
Lead	11.37	709.5	
Mercury	13.55	845.6	113.14
Gold	19.31	1,204.9	

Density of Various Gases

	Specific	Pounds/
Gas	Gravity	Cubic Foot
Hydrogen	0.073	0.00561
Helium	0.146	0.01114
Air	1.000	0.07651
Nitrogen	1.020	0.07807
Oxygen	1.166	0.08921
Carbon Dioxide	1.613	0.12341

2.5 Hydraulic Relationships

Relationships exist between pressure, area, and volume in a hydraulic actuator that allow us to find the value of any one of them when the other two are known. Circle graphs make it easy for us to visualize the way to find the desired value.

To find the value of the shaded area, multiply the other two if they are both below the horizontal line. Divide if they are separated by the horizontal line.

The amount of force produced by a hydraulic actuator can be found by multiplying the pressure in pounds per square inch (psi), by the area of the piston in square inches.

The area of a piston needed to produce a given amount of force can be found by dividing the force, in pounds, by the pressure of the hydraulic fluid in psi.

$$\begin{array}{c} F \\ \hline A \\ \hline P \end{array} \quad A = \frac{F}{P} \end{array}$$

The amount'of pressur needed for a piston having a given area (in square inches) to produce a known force may be found by dividing the amount of force by the area of the piston.

Relationships exist between the volume of fluid moved by a piston in a cylinder, the area of the piston, and the distance the piston moves. Circle graphs make it easy for us to visualize the way to find the desired value.

The volume of fluid, in cubic inches, moved by a piston is found by multiplying the area of the piston in square inches, by the distance the piston has moved in inches.

The area of a piston needed to move a given quantity of fluid is found by dividing the volume of the fluid by the distance the piston moves.

The distance that a piston with a given area must move to displace a given volume of fluid is found by dividing the volume of the fluid by the area of the piston.

2.6 Quantity of Liquid in a Drum

Estimating Quantity of Liquid In a Standard 55-Gallon Drum

5		Drum On	
Drum Up	right	Drum On	its Side
Depth of	Gallons	Depth of	Gallons
Liquid (Inches)	(approx.)	Liquid (inches)	(approx.)
31	54.0	20	55.0
30	52.0	19	52.5
29	50.0	18	50.0
28	48.5	17	47.5
27	47.0	16	44.5
26	45.0	15	41.5
25	43.5	14	38.5
24	41.5	13	35.0
23	40.0	12	32.0
22	38.0	11	28.5
21	36.5	10	25.0
20	34.5	9	22.0
19	33.0	8	18.5
18	31.5	7	15.5
17	29.5	6	12.5
16	27.5	5	9.5
15	26.0	4	7.0
14	24.5	3	4.5
13	22.5	2	2.5
12	21.0		0.8
11	19.0		
10	17.5		
9	15.5		
8	14.0		
7	12.0		
6	10.5		
5	8.5		
4	7.0		
3	5.0		
2	3.5		
1	2.0		

Section 3: Mathematics

- 31 Measurement Systems Page47
- 32 Mathematical Constants Page50
- 3 Mathematical Symbols Page51
- 34 Squares, Square Roots, Cubes, Cube Roots of Numbers Page 52
- 3.5 Diameter, Circumference and Area of a Circle Page 55
- 3.6 Geometric Formulas Page 58
- 3.7 Trigonometric Functions Page 61
- 3.8 Powers of Ten Page 65
- 3.9 Number Systems Page 68

3.1 Measurement Systems

There are two systems of measurement used in the United States: the U.S. Customary system (U.S.), and the metric system.

The U.S. Customary system was mainly derived from the British Imperial system in which there is no correlation between the units, and the basis of many are arbitrary. However, they have been used for so long that most of us are familiar with them. The metric system, on the other hand, is based upon absolute and repeatable physical factors. The sizes of the units change in multiples of 10.

The metric system had its start in France late in the eighteenth century when the unit of length, the meter, was accepted as being equal to one tenmillionth of the length of the arc from the equator to the North Pole. The unit of mass was the kilogram which was equal to the mass of water contained in a cube whose length, width, and height are one tenth of a meter.

The metric system spread slowly from France to other European countries. In the United States, in July of 1866, legislation was signed into law authorizing, but not mandating the use of the metric system. More than one hundred years later, in 1968, Congress authorized an intensive study to determine the advantages and disadvantages of increased use in the U.S. of the metric system. In 1975 the U.S. Metric Board was established to coordinate the voluntary conversion to the metric system.

The Omnibus Trade Bill passed in 1988 required most federal agencies to convert to metric units in their activities by 1992.

Enthusiastic adoption of the metric system in the U.S. has been slow because of the tremendous amount of machinery and equipment in use that was built to U.S. dimensions. However, the increase in international trade has caused many U.S. manufacturers to include both U.S. and metric dimensions in their service literature. The popularity of foreign automobiles in the U.S. has increased the familiarity of most Americans with metric dimensions. Most professional mechanics and technicians now have two sets of hand tools, one U.S. and the other metric.

The International System of Units (SI)

TheInternational System of Units is founded on seven base units:

length	meter
mass	kilogram
time	second
electrical current	ampere
temperature	°Kelvin
amount of substance	mole
luminous intensity	candela

These units make up a complete set from which all other units of measurementcan be derived.

The Metric System

The metric system is based upon dividing and multiplying the standard units by the powers of 10 and giving each a name indicating its value.

Prefix	Symbol	Power
exa	E	1018
peta	р	1015
tera	Т	1012
giga	G	109
mega	Μ	106
kilo	k	103
hecto	h	102
deka	da	10 ¹
UNIT		
decl	d	10-1
centl	С	10-2
mlli	m	10.3
micro	m	10-6
nano	n	10.9
pico	р	10.12
femto	f	10•15
atto	а	10.18

U.S. - Metric Conversion

The basis of many units In the U.S. system are arbitrary and are not reproducible. But by relating them to one of the units in the SI system, they are traceable back to a reproducible basic unit.

l.ength

1 inch		2.54 centimeters
1 foot	121nches	30.48 centimeters
1 yard	3 feet	0.9144 meter
1 statute mile	5,280 feet	1.609 kilometers
1 nautical mile	6,076 feet	1.852 k.ilometers
Weight		
1 ounce		28.3495 gram
1 pound	16 ounces	0.4536 kilogram
1 ton	2,000 pounds	907.2 kilograms

Volume

1 cubic inch16.39 cubic centimeters1 cubic inch0.01639 liter1 U.S. gallon231 cubic inches3.785 liters1 Imperial gallon1.2 U.S. gallons4.542 liters

3.2 Mathematical Constants

rt= 3.1416	4rc; 12.5664
rt ² = 9.8696	= 1.5708
$rt^3 = 31.0063$	
K = 0.3183	'2. = 1.253
1/.	12. =1.4142
$\frac{-1}{4} = 0.1013$	13=1.7321
m= 1.7725	<u>n ¹=0.7071</u>
1 <u><i>fii</i></u> = 0.5642	.1
1 2.rt 0.1502	f3= 0.5773
<u>2:1</u> l = 0.1592	log n: =0 . 4971
dJ2 = 0.0253	$\log rt^2 = 0.9943$
 2n:	log,/it=0.2486
2n:= 6.2832	log = 1.5708
2n:2 = 39.4784	Ŭ

3.3 Mathematical Symbols

+	Plus, or positive
	Minus, or negative
x or -	Multiplied by
+	Divided by
=	Equal to
••	Not equal to
_ .!:	Approximately equal to Greater than or equal to
S	Less than or equal to
_	Identical with
>	Greater than
<	Less than
11	Parallel with
L	Perpendicular to
±	Plus or minus
00	Infinity
6	Increment
.fa	Square root of a
;ta	Cube root of a
lal	Absolute value of a
L	Angle
	Therefore
3	Thereexists
	Ratio

3.4 Squares, Square Roots, Cubes, Cube Roots of Numbers

Number	Square	Square Root	Cube	Cube Root
1	1	1.0000	1	1.0000
2	4	1.4142	8	1.2599
3	9	1.7321	27	1.4423
4	16	2.0000	64	1.5874
5	25	2.2361	125	1.7110
6	36	2.4495	216	1.8171
7	49	2.6458	343	1.9129
8	64	2.8284	512	2.0000
9	81	3.0000	729	2.0801
10	100	3.1623	1,000	2.1544
11	121	3.3166	1,331	2.2240
12	144	3.4641	1,728	2.2894
13	169	3.6056	2,197	2.3513
14	196	3.7417	2,744	2.4101
15	225	3.8730	3,375	2.4662
16	256	4.0000	4,096	2.5198
17	289	4.1232	4,913	2.5713
18	324	4.2426	5,832	2.6207
19	361	4.3589	6,859	2.6684
20	400	4.4721	8,000	2.7144
21	441	4.5826	9,261	2.7589
22	484	4.6904	10,648	2.8020
23	529	4.7958	12,167	2.8439
24	576	4.8990	13,824	2.8845
25	625	5.0000	15,625	2.9240
26	676	5.0990	17,576	2.9625
27	729	5.1962	19,683	3.0000
28	784	5.2915	21,952	3.0366
29	841	5.3852	24,389	3.0723
30	900	5.4772	27,000	3.1072
31	961	5.5678	29,791	3.1414
32	1,024	5.6569	32,768	3.1748
33	1,089	5.7446	35,937	3.2075
34	1,156	5.8310	39,304	3.2396
35	1,225	5.9161	42,875	3.2711
36	1,296	6.0000	46,656	3.3019
37	1,369	6.0828	50,653	3.3322
38	1,444	6.1644	54,872	3.3620
39	1,521	6.2450	59,319	3.3912

Number	Square	Square Root	Cube	Cube Root	
40	1,600	6.3246	64,000	3.4200	
41	1,681	6.4031	68,921	3.4482	
42	1,764	6.4807	74,088	3.4760	
43	1,849	6.5574	79,507	3.5034	
44	1,936	6.6333	85,184	3.5303	
45	2,025	6.7082	91,125	3.5569	
46	2,116	6.7823	97,336	3.5830	
47	2,206	6.8557	103,823	3.6088	
48	2,304	6.9282	110,592	3.6342	
49	2,401	7.0000	117,649	3.6593	
50	2,500	7.0711	125,000	3.6840	
51	2,601	7.1414	132,651	3.7084	
52	2,704	7.2111	140,608	3.7325	
53	2,809	7.2801	148,877	3.7563	
54	2,916	7.3485	157,464	3.7798	
55	3,025	7.4162	166,375	3.8030	
56	3,136	7.4833	175,616	3.8259	
57	3,249	7.5498	185,193	3.8485	
58	3,364	7.6158	195,112	3.8709	
59	3.481	7.6811	205,379	3.8930	
60	3,600	7.7460	216,000	3.9149	
61	3,721	7.8103	226,981	3.9365	
62	3,844	7.8740	238,328	3.9579	
63	3,969	7.9373	250,047	3.9791	
64 65	4,096	8.0000	262,144	4.0000	
60	4,225	8.0623	274,625	4.0207	
60	4,356	8.1240	287,496	4.0412	
60	4,469	0.1004	300,763	4.0010	
60	4,024	0.2402	314,432	4.0017	
70	4,701	8.3666	343 000	4.1010	
71	5,041	8 4262	357 011	4.1213	
72	5 184	8 4853	373 248	4.1400	
73	5 329	8 5440	389.017	4.1702	
74	5 476	8 6023	405 224	4 1983	
75	5.625	8 6603	421 875	4 2172	
76	5,776	8.7178	438,976	4.2358	
77	5,929	8.7750	456.533	4.2543	
78	6.084	8.8318	474.552	4.2727	
79	6.241	8.8882	493.039	4.2908	
80	6,400	8.9443	512.000	4.3089	
81	6,561	9.0000	531,441	4.3267	
82	6,724	9.0554	551,368	4.3445	
83	6,889	9.1104	571,787	4.3621	

Number	Square	Square Root	Cube	Cube Root
84	7,056	9.1652	592,704	4.3795
85	7,225	9.2195	614,125	4.3968
86	7,396	9.2736	636,056	4.4140
87	7,569	9.3274	658,503	4.4310
88	7,744	9.3808	681,472	4.4480
89	7,921	9.4340	704,969	4.4647
90	8,100	9.4868	729,000	4.4814
91	8,281	9.5394	753,571	4.4979
92	8,464	9.5917	778,688	4.5144
93	8,649	9.6437	804,357	4.5307
94	8,836	9.6954	830,584	4.5468
95	9,025	9.7468	857,375	4.5629
96	9,216	9.7980	884,736	4.5789
97	9,409	9.8489	912,673	4.5947
98	9,604	9.8995	941,192	4.6104
99	9,801	9.9499	970,299	4.6261
100	10,000	10.0000	1,000,000	4.6416

3.5 Diameter, Circumference and Area of a Circle

Diameter <i>Units</i>	Circumference Units	Area Square Units
1	3.1416	0.7854
2	6.2832	3.1416
3	9.4248	7.0686
4	12.5664	12.566
5	15.7080	19.635
6	18.8496	28.274
7	21.9911	38.485
8	25.1327	50.265
9	28.2743	63.617
10	31.4159	78.540
11	34.5575	95.033
12	37.6991	113.10
13	40.8407	132.73
14	43.9823	153.94
15	47.1239	176.71
16	50.2655	201.06
17	53.4071	226.98
18	56.5487	254.47
19	59.6903	283.53
20	62.8319	314.16
21	65.9735	346.36
22	69.1150	380.13
23	72.2566	415.48
24	75.3982	452.39
25	78.5398	490.87
26	81.6814	530.93
27	84.8230	572.56
28	87.9646	615.75
29	91.1062	660.52
30	94.2478	706.86
31	97.3894	754.77
32	100.5310	804.25
33	103.6726	855.30
34	106.8142	907.92
35	109.9557	962.11
36	113.0973	1,017.88
37	116.2389	1,075.21
38	119.3805	1,134.12

Diameter	Circumference	Area
Units	Units	Square Units
39	122.5221	1,194.59
40	125.6637	1,256.64
41	128.8053	1,320.25
42	131.9469	1,385.44
43	135.0885	1,452.20
44	138.2301	1,520.53
45	141.3717	1,590.43
46	144.5133	1,661.90
47	147.6549	1,734.95
48	150.7964	1,809.56
49	153.9380	1,885.74
50	157.0796	1,963.50
51	160.2212	2,042.82
52	163.3628	2,123.72
53	166.5044	2,206.18
54	169.6460	2,290.22
55	172.7876	2,375.83
56	175.9292	2,463.01
57	179.0708	2,551.76
58	182.2124	2,642.08
59	185.3540	2,733.97
60	188.4956	2,827.43
61	191.6372	2,922.47
62	194.7787	3,019.07
63	197.9203	3,117.25
64	201.0619	3,126.99
65	204.2035	3,318.31
66	207.3451	3,421.19
67	210.4867	3,525.65
68	213.6283	3,631.68
69	216.7699	3,739.28
70	219.9115	3,848.45
71	223.0531	3,959.19
72	226.1947	4,071.50
73	229.3363	4,185.39
74	232.4779	4,300.84
75	235.6194	4,417.87
76	238.7610	4,536.46
77	241.9026	4,656.63
78	245.0442	4,778.36
79	248.1858	4,901.67
80	251.3274	5,026.55
81	254.4690	5,153.00

Diam eter	Cir cum feren ce	Area
Units	Units	Square Units
82	257.6106	5,281.02
83	260.7522	5,410.61
84	263.8938	5,541.77
85	267.0354	5,674.50
86	270.1770	5,808.81
87	273.3186	5,944.68
88	276.4602	6,082.12
89	279.6017	6,221.14
90	282.7433	6,361.73
91	285.8849	6,503.88
92	289.0265	6,647.61
93	292.1681	6,792.91
94	295.3097	6,939.78
95	298.4513	7,088.22
96	301.5929	7,283.23
97	304.7345	7,389.81
98	307.8861	7,542.96
99	311.0177	7,697.69
100	314.1593	7,853.98

3.6 Geometric Formulas

Triangle

A closed, three-sided, plane figure. The sum of the angles in a triangle is always equal to 180 degrees.

Area:

 $A = \frac{b \times a}{2}$

b = Length of the basea = Altitude (height)

Square

A closed, four-sided, plane figure. All sides are of equal length and the opposing sides are parallel. All angles are right angles.

Area:

 $A = S^2$

s = Length of one of the sides

Rectangle

A closed, four-sided, plane figure. The opposing sides are of equal length and are parallel. All angles are right angles.

Area:

A = I XW

I = Length of longer side w = Length of shorter side

Parallelogram

A closed, four-sided, plane figure. The opposing sides are of equal lengths and are parallel. None of the angles are right angles.

Area:

I = Leng th of Io n ger side

h = Height (perpendicular distance between the two longer sides)

Trapezoid

A closed, four-sided, plane figure. Two of the opposing sides are parallel, but are of unequal length.

Area:

$$A = \frac{(a+b)}{2} \times h$$

- a = Length of the longest parallel side
- b = Length of the shortest parallel side
- h = Height (perpendicular distance between the parallel sides)
Regular Pentagon

A closed, five-sided, plane figure. All sides are of equal length, and all angles are equal.

Area:

A = 1.720 x s2

s = Length of one side

Regular Hexagon

A closed, six-sided, plane figure. All sides are of equal length, and all angles are equal.

Area:

 $A = 2.598 \times s^2$

s = Length of one side

Regular Octagon

A closed, eight-sided, plane figure. All sides are of equal length, and all angles are equal.

A = 4.828 x 52

I

s = Length of one side

Circle

Aclosed, curved, plane figure. Every point on the curve is an equal distance from a point within the curve called the center. Circumference:

C=nxd

 $n = \mathbf{A}$ constant, 3.1416 d = Diameter of a circle

Area:

 $A = n \times r^2$

or

A= 0.7854 x d2

n = A constant, 3.1416 r = Radius of a circle d = Diameter of a circle

Ellipse

A closed, plane curve, generated by • a point moving in such a way that the sums of the distances from two fixedpoints is constant.

Circumference:

Area :

A=nab

rr = A constant, 3.1416 a = Length of one of the semiaxes b = Length of the other semiaxis

Sphere

A solid object bounded by a surface, all points of which are a constant distance from a point within, called the center.

Surface area:

 $A=4nr^2$

Volume:

 $V = \frac{4\pi}{3} \times r^3$

or

 $V = \frac{\pi}{6} \times d^3$

71 = A constant, 3.1416r = Radius of a circle d = Diameter of a circle

Cube

A regular solid figure having six square sides.

Surface area:

 $\mathsf{A} = 6 \ge \mathsf{S}^2$

Volume:

 $A = s^3$

s = Length of one of the sides

Rectangular Solid

A solid figure with six rectangular sides.

Surface area:

 $A=2([I \times w] + [I \times h] + [w \times h])$

Volume:

V=lxwxh

I = Lengthw = Widthh = Height

Cone

A solid figure with a circular base and sides that taper to a point.

Curved surface area:

$$A = \underline{nr} r^2 + \underline{h}^2$$

Volume:

$$V = \frac{\pi}{3} \times r^2 h$$

 $_{71}$ = A constant, 3.1416 r = Radius of the base h = Vertical height of the cone

Cylinder

A solid figure with circular ends and parallel sides.

Surface area:

A = n x d x h

Volume:

V = 0.7854 x d2x h

 $\begin{array}{l} :n:= \textbf{A} \mbox{ constant}, \ 3.1416 \\ d = \mbox{Diameter of the end} \\ h = \mbox{Height of the cylinder} \end{array}$

3.7 TrigonometriEunctions

Trigonometry is based on the relationship between the angles and the lengths of the sides of a right triangle (a triangle that contains one 90-degree angle). Since the sum of the angles in any triangle is always 180 degrees, the

sum of the two acute angles in a right triangle is always 180 degrees, the

The functions considered are those of one of the acute angles, called angle 0 (Theta). The side of the triangle between angle 0 and the right angle is the side adjacent, and the side away from angle 0 is the side opposite. The side of the triangle joining the two acute angles is called the hypotenuse.

Side Adjacent

The six basic trigonometric functions, the sine (sin), cosine (cos), tangent (tan), cosecant (csc), secant (sec), and cotangent (cot) are the ratios of the lengths of the three sides of a right triangle.

S• (.) <u>side opposite</u> me sin = hypotenuse Cosine (cos)0 = hypotenuse Tangent (tan) 0 = $\frac{\text{side opposite}}{\text{side adjacent}}$ Cosecant (csc)⁰ = $\frac{1}{\sin 0}$ = $\frac{\text{hypotenuse}}{\text{side opposite}}$ Secant (sec)⁰ = $\frac{1}{\cos 0}$ = $\frac{1}{\sin 0}$ = $\frac{1}{3}$ =

Degre	es	Sines	Cosines	Tangents	Cotangen	ts	
0.	00'	0.0000	1.0000	0.0000		90°	00'
	30'	0.0087	0.9999	0.0087	114.59		30'
1• (00'	0.0175	0.9998	0.0175	57.290	a9•	00'
	30'	0.0262	0.9997	0.0262	38.188		30'
2•	00'	0.0349	0.9994	0.0349	28.636	as∙	00'
	30'	0.0436	0.9990	0.0437	22.904		30'
3• (00'	0.0523	0.9986	0.0524	19.081	87°	00'
	30'	0.0610	0.9981	0.0612	16.350		30'
40	00'	0.0698	0.9976	0.0699	14.301	86°	00'
	30'	0.0785	0.9969	0.0787	12.706		30'
5•	00'	0.0872	0.9962	0.0875	11.430	as	00'
	30'	0.0958	0.9954	0.0963	10.385		30'
5•	00'	0.1045	0.9945	0.1051	9.5144	a4•	00'
	30'	0.1132	0.9936	0.1139	8.7769		30'
7°	00'	0.1219	0.9925	0.1228	8.1443	a3•	00'
	30'	0.1305	0.9914	0.1317	7.5958		30'
a•	00'	0.1392	0.9903	0.1405	7.1154	a2·	00'
	30'	0.1478	0.9890	0.1495	6.6912		30'
9•	00'	0.1564	0.9877	0.1584	6.3138	a1°	00'
	30'	0.1650	0.9863	0.1673	5.9758		30'
10°	00'	0.1736	0.9848	0.1763	5.6713	so	00'
	30'	0.1822	0.9833	0.1853	5.3955		30'
11°	00'	0.1908	0.9816	0.1944	5.1446	79°	00'
	30	0.1994	0.9799	0.2035	4.9132	1	50
12°	00'	0.2079	0.9781	0.2126	4.7046	1a·	00'
	30'	0.2164	0.9763	0.2217	4.5107		30'
13°	00'	0.2250	0.9744	0.2309	4.3315	77°	00'
	30'	0.2334	0.9724	0.2401	4.1653		30'
14°	00'	0.2419	0.9703	0.2493	4.0108	76°	00'
1 50	30'	0.2504	0.9681	0.2586	3.8667		30'
15°	00'	0.2588	0.9659	0.2679	3.7321	75°	00'
1.50	30	0.2672	0.9636	0.2773	3.6059	740	30
16°	201	0.2756	0.9613	0.2867	3.4874	74°	201
170	30	0.2840	0.9588	0.2962	3.3739	720	30
1/°	201	0.2924	0.9563	0.3057	3.2709	130	201
4.00	30	0.3007	0.9537	0.3153	3.1/10	720	30
18	201	0.3090	0.9311	0.3249	3.0777	12	20'
100	30 00'	0.3175	0.9485	0.3340	2.9887	710	00'
19	30'	0.3230	0.2433	0.3443	2.2042	/ 1	30'
20°	00'	0.3338	0.2420	0.3541	2.0239	70°	00'
20	30'	0.3420	0.2327	0.3040	2.1413	70	30'
21°	00'	0.3584	0.9307	0.3839	2.6740	69°	00'
$\angle 1$	00	0.5504	0.7550	0.3039	2.0031	02	00
		Cosines	Sines	Cotangents	Tangents	Deg	rees

Degre	es	Sines	Cosines	Tangents	Cotangent	s	
	30'	0.3665	0.9304	0.3939	2.5386		30'
22°	00'	0.3746	0.9272	0.4040	2.4751	68°	00'
	30'	0.3827	0.9239	0.4142	2.4142		30'
23°	00'	0.3907	0.9205	0.4245	2.3559	67°	00'
	30'	0.3987	0.9171	0.4348	2.2998		30'
24°	00'	0.4067	0.9135	0.4452	2.2460	66°	00'
	30'	0.4147	0.9100	0.4557	2.1943		30'
25°	00'	0.4226	0.9063	0.4663	2.1445	65°	00'
	30'	0.4305	0.9026	0.4770	2.0965		30'
26°	00'	0.4384	0.8988	0.4877	2.0503	64°	00'
	30'	0.4462	0.8949	0.4986	2.0057		30'
27°	00'	0.4540	0.8910	0.5095	1.9626	63°	00'
	30'	0.4617	0.8870	0.5206	1.9210		30'
28°	00'	0.4695	0.8829	0.5317	1.8807	62°	00'
	30'	0.4772	0.8788	0.5430	1.8418		30'
29°	00'	0.4848	0.8746	0.5543	1.8040	61°	00'
	30'	0.4924	0.8704	0.5658	1.7675		30'
30°	00'	0.5000	0.8660	0.5774	1.7321	60°	00'
0.4.0	30	0.5075	0.8616	0.5890	1.6977		30'
31°	00'	0.5150	0.8572	0.6009	1.6643	59°	00
200	30	0.5225	0.8526	0.6128	1.6319	500	30'
32°	20'	0.5299	0.8480	0.6249	1.6003	58°	00
220	30	0.5373	0.8434	0.6371	1.5697	E7º	30
55	20'	0.5440	0.0007	0.6494	1.5599	57	20'
210	00'	0.5519	0.0009	0.6745	1.0100	56°	30 00'
54	30'	0.5592	0.0290	0.6743	1.4020	50	20'
250	00'	0.5004	0.0241	0.0073	1 4004	EE°	00'
55	20'	0.5750	0.0192	0.7002	1.4201	55	20'
36°	00'	0.5878	0.0141	0.7155	1 3764	54°	טט יחס
50	30'	0.5070	0.0000	0.7200	1 3514	54	30'
37°	יחס	0.6018	0.7986	0.7536	1.3270	53°	00'
0.	30'	0.6088	0.7934	0.7673	1.3032	00	30'
38°	00'	0.6157	0.7880	0.7813	1.2799	52°	00'
	30'	0.6225	0.7826	0.7954	1.2572		30'
39°	00'	0.6293	0.7771	0.8098	1.2349	51°	00'
	30'	0.6361	0.7716	0.8243	1.2131		30'
40°	00'	0.6428	0.7660	0.8391	1.1918	50°	00'
	30'	0.6494	0.7604	0.8541	1.1708		30'
41°	00'	0.6561	0.7547	0.8693	1.1504	49°	00'
	30'	0.6626	0.7490	0.8847	1.1303		30'
42°	00'	0.6691	0.7431	0.9004	1.1106	48°	00'
	30'	0.6756	0.7373	0.9163	1.0913		30'
		Cosines	Sines	Cotangents	Tangents	Deg	rees

Degre	es	Sines	Cosines	Tangents	Cotangents	
43°	00'	0.6820	0.7314	0.9325	1.0724	47° 00'
	30'	0.6884	0.7254	0.9490	1.0538	30'
44°	00'	0.6947	0.7193	0.9657	1.0355	46° 00'
	30'	0.7009	0.7133	0.9827	1.0176	30'
45°	00'	0.7071	0.7071	1.0000	1.0000	$45^{\circ} 00'$
		Cosines	Sines	Cotangents	Tangents	Degrees

3.8 Powers of Ten

Numbers larger than one:

Move the decimal to the left until you have a number between one and ten. Multiply this number by ten raised to the power equal to the number of places you moved the decimal.

 $1 = 1 \times 10^{\circ}$ $10 = 1 \times 10^{1}$ $100 = 1 \times 10^{2}$ $1,000 = 1 \times 10^{3}$ $10,000 = 1 \times 10^{4}$ $100,000 = 1 \times 10^{6}$ $10,000,000 = 1 \times 10^{7}$ $100,000,000 = 1 \times 10^{8}$ $1,000,000,000 = 1 \times 10^{9}$ $10,000,000,000 = 1 \times 10^{11}$ $1,000,000,000 = 1 \times 10^{11}$

Numbers smaller than one:

Move the decimal to the right until you have a number between one and ten. Multiply this number by ten raised to the negative power equal to the number of places you moved the decimal.

 $\begin{array}{c} 0.1 = 1 \, \mathrm{x} \, 10^{*1} \\ 0.01 = 1 \, \, \mathrm{x} 10.2 \\ 0.001 = 1 \, \, \mathrm{x} 10^{*3} \\ 0.000 \, 1 = 1 \, \mathrm{x} \, 10^{*4} \\ 0.000 \, 01 = 1 \, \mathrm{x} \, 10^{*5} \\ 0.000 \, 000 \, 1 = 1 \, \mathrm{x} \, 10.6 \\ 0.000 \, 000 \, 1 = 1 \, \mathrm{x} \, 10.7 \\ 0.000 \, 000 \, 001 = 1 \, \mathrm{x} \, 10.9 \\ 0.000 \, 000 \, 000 \, 1 = 1 \, \mathrm{x} \, 10.9 \\ 0.000 \, 000 \, 000 \, 01 = 1 \, \mathrm{x} \, 10.10 \\ 0.000 \, 000 \, 000 \, 01 = 1 \, \mathrm{x} \, 10.11 \\ 0.000 \, 000 \, 000 \, 001 = 1 \, \mathrm{x} \, 10.12 \end{array}$

Addition of numbers using powers of ten:

- 1. Change all the numbers so they will have the same power of ten.
- 2. Add thenumbers.
- 3. The answer will have the same power of ten.

Add: 356 + 1,254 $356 = 3.56 \times 10^{2}$ $1,254 = 1.254 \times 10^{3}$ Change 1.254×10^{3} to 12.54×10^{2} , and add: $3.56 \times 10^{2} + 12.54 \times 10^{2}$ $16.1 \times 10^{2} = 1,610$

Subtraction of numbers using powers of ten:

- 1. Change all the numbers so they will have the same power of ten.
- 2. Subtract the smaller number from the larger.
- 3. The answer will have the same power of ten.

Subtract: 1,254 - 356 1,254: 1.254 $\times 10^3$ 356 = 3.56 $\times 10^2$ Change 1.254 $\times 10^3$ 10 12.54 $\times 10^2$, and subtract: 12.54 $\times 10^2$ - 3,56 $\times 10^2$ = 8.98 $\times 10^2$ = 898

Multiplication of numbers using powers of ten:

- 1. Change all the numbers into powers of ten.
- 2. Multiply the numbers.
- 3. Add the powers of ten and use this as the power of ten for the answer.

Multiply: 0.356 x 1,254

 $0.356 = 3.56 \times 10^{-1}$ 1,254 = 1.254 × 10¹ 3.56 × 101 × 1.254 × 10³ = 4.464 × 10² = 446.4 Division of numbers using powers of ten: -

- 1. Change all of the numbers into powers of ten.
- 2. Divide the numbers.
- 3. Subtract the power of ten of the denominator from the power of ten of the numerator and use this as the power of ten for the answer.

Divide: 1,254 by 356

 $\begin{array}{l} 1,254 = 1.254 \times 10^{3} \\ 356 = 3.56 \times 10^{2} \\ 1.254 \times 10^{3} + 3.56 \times 10^{2} = 0.352 \times 10^{1} = 3.52 \end{array}$

...

3.9 Number Systems

Binary Equival	ent of Decimal	Binary Eq	uivalent	t of Octal
Decimal	Binary	Octa		Binary
0	0000	0		000
1	0001	1		001
2	0010	2		010
3	0011	3		011
4	0100	4		100
5	0101	5		101
6	0110	6		110
7	0111	7		111
8	1000			
9	1001	Hexadecir	nal Nun	nber System
10	1010	Dec imal	He x	B i n ary
11	1011	0	0	0000
12	1100	1	1	0001
13	1101	2	2	0010
14	1110	3	3	0011
15	1111	4	4	0100
		5	5	0101
Octal Equivale	ent of Decimal	6	6	0110
Decimal	Octal	7	7	0111
0	0	8	8	1000
1	1	9	9	1001
2	2	10	Α	1010
3	3	11	В	1011
4	4	12	С	1100
5	5	13	D	1101
6	6	14	E	1110
7	7	15	F	1111
8	10			
9	11	ļ		
10	12			

12

Binary Coded Decimal Equivalent of Decimal

Decimal	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

The Gray Code

The gray code is used for optical or mechanical shat-position encoders because of itss peedOnly one bit changes between each successe word.

Dec imal	Gray	Binary
0	0000	0000
1	0001	0001
2	0011	0010
3	0010	0011
4	0110	0100
5	0111	0101
6	0101	0110
7	0100	0111
8	1100	1000
9	1101	1001
10	1111	1010
11	1110	1011
12	1010	1100
13	1011	1101
14	1001	1110
15	1000	1111

American Standard Code for Information Interchange (ASCII)

ASCII	Decimal	Octal	Hex	
NUL	0	000	00	
SOH	1	001	01	
STX	2	002	02	
ETX	3	003	03	- 1
EOT	4	004	04	
ENO	5	005	05	
ACK	6	006	06	
BEL	7	007	07	
BS	8	010	08	
HT	9	011	09	
LF VT	1 U 1 1	012	OA	
v 1 FF	10	014	OB	
CR	13	014		
SO	14	016	OF	
ST	15	017	OE	
OLE	16	020	10	
DC1	17	021	11	
DC2	18	022	12	
DC3	19	023	13	
DC4	20	024	14	
NAK	21	025	15	
SYN	22	026	16	
ETB	23	027	17	
CAN	24	030	18	
ΕM	25	031	19	
SUB	26	032	1A	
ESC	27	033	18	
FS	28	034	10	
GS	29	035	1D 1 E	
LIC I	21	030	10	
CD CD	30	0.4.0	20	
SE	33	040	20	
	34	041	22	
#	35	042	22	
\$	36	044	24	
%	37	045	25	
&	38	046	26	
	39	047	27	
	40	050	28	

ASCII	Decimal	Octal	Hex	ASCII	Decimal	Octal	Hex
)	41	051	29	u	85	125	55
	42	052	2A	V	86	126	56
+	43	053	2B	W	87	127	57
	44	054	2C	Х	88	130	58
	45	055	20	У	89	131	59
	46	056	2E	Z	90	132	SA
Ι	47	057	2F	[91	133	5B
0	48	060	30	\	92	134	SC
1	49	061	31	1	93	135	50
2	50	062	32	\wedge	94	136	SE
3	51	063	33		95	137	SF
4	52	064	34		96	140	60
5	53	065	35	а	97	141	61
0	54 55	060	30	b	98	142	62
0	55	007	20	C	99	143	63
9	57	070	30	d	100	144	64
)	58	072	32	e f	101	145 146	65
	59	072	3B	I a	102	140	60
_	60	074	30	g h	103	150	60
=	61	075	30	T	104	151	69
>	62	076	3E	i	106	152	6A
?	63	077	ЗF	k	107	1.5.3	6B
@	64	100	40	I	108	154	6C
A	65	101	41	m	109	155	60
В	66	102	42	n	110	156	6E
С	67	103	43	0	111	157	6F
D	68	104	44	р	112	160	70
E	69	105	45	q	113	161	71
F	70	106	46	r	114	162	72
G	71	107	47	S	115	163	73
н	72	110	48	Ι	116	164	74
1	73		49	u	117	165	75
J	74		4A	V	118	166	76
n T	75	114	4B	W	119	167	77
	70	114 115	4C 40	Х	120	170	78
N	7.8	116	40	У	121	171	79
0	79	117	4 F	Z	122	172	7A
p	80	120	50		123	173	/B
C.	81	121	51		124	175	/C
R	82	122	52		125	170 170	/ U
S	83	123	53	DET	120	177	/ 또 ㄱㅁ
T	84	124	54	DEL		1 / /	/ Ľ

Special Control Functions Used in ASCII:

NUL	Null
SOH	Start of Heading
STX	Start of Text
ETX	End of Text
EOT	End of Transmission
ENO	Enquiry
ACK	Acknowledge
BEL	Bell (audible signal)
BS	Backspace
HT	. Horizontal Tabulation
LF	Line Feed
VT	Vertical Tabulation
FF	Form Feed
CR	Carriage Return
SO	ShiftOut
SI	ShiftIn

SP	Space
OLE	Data Link Escape
DC1	Device Control 1
DC2	Device Control 2
DC3	Device Control 3
DC4	Device Control 4
	::::::::::::::::::::::::::::::::::::::
ETB	End of Transmission Block
CAN	Cancel
CAN	Cancel End of Message
CAN EM SUB	Cancel End of Message Substitute
CAN EM SUB ESC	Cancel End of MessageSubstitute Escape
CAN EM SUB ESC FS	CancelCancel
CAN EM SUB ESC FS GS	CancelCancel
CAN EM SUB ESC FS GS RS	CancelCancel
CAN EM SUB ESC FS GS US	CancelCancelCancelCancel

Section 4: Aircraft Drawings

- 4.1 Types of Aircraft Drawings Page 75
- 4.2 Meaning of Lines Page 77
- 4.3 Material Symbols Page 78
- 4.4 Location Identification Page 79

4.1 Types of Aircraft Drawings

There are a number of types of drawings used in aircraft manufacture and maintenance. Each type of drawing has a definite function and purpose.

Sketche s

These are rough drawings made without the use of instruments. They are used to convey only a specific bit of information and include the minimum amount of detail needed to manufacture the part.

Detail Dra w ing s

Detail drawings are made with the use of instruments, or on a computer. They include all of the information needed to fabricate a part, including dimensions.

Assembly Drawing s

An assembly drawing shows all of the components in an assembly. The components are shown in exploded view to display the way they are assembled. A parts list is included showing the reference number, part number, description, quantity per assembly, and model usage for each component.

In stall ation Drawing s

These drawings show the location of the parts and assemblies on the completed aircraft and identifies all of the detail parts used in the installation.

Sectional Drawings

These show the way a component would appear if it were cut through the middle. Different types of sectional lines and cross-hatching show the different types of materials used in the component.

A half-sectional drawing shows a part as it would appear with only one half a sectional view and the other half a plain view.

Cutaway Drawing

Acutaway drawing shows the outside of a component with part of it cut away to show the parts on the inside.

Exploded-View Drawing

Explodedview drawings are similar to assembly drawings. All of the parts in a component are spread out to show what each looks like and their relationship to other parts.

Schematic Diagram

A schematic diagram shows the relative location of all of the parts in a system but does not give the physical location in the aircraft. Schematic diagrams are extremely useful in troubleshooting a system.

Block Diagram

Block diagrams show the various functions of a system but do not include any details. Lines connecting the blocks show the direction of flow of signals or other forms of information. Block diagrams help explain the way a complex system works, and they are often used in troubleshooting

Repair Drawings

These are drawings used to show the way a repair Is made. They are used in aircraft manufacturer's maintenance and repair manuals to illustrate typical repairs. No dimensions are given, but enough information is provided that an experienced technician can use the drawing as a guide to make an airworthy repair.

Wiring Diagrams

Wiring diagrams show all of the wires In a particular section of an aircraft electrical system. The parts list accompanying the drawing provides the wire size, wire number, and the part number of the terminals on each end of each wire.

Pictorial Diagrams

Pictorial diagrams show the components as they actually appear, rather than using conventional symbols. Pictorial diagrams are often used for electrical systems in Pilot's Operating Handbooks.

Orthographic Projections

There are six possible views in an orthographic projection:

4.2 Meaning of Lines

4.3 Material Symbols

Cast iron

Aluminum, magnesium and their alloys

	•	•			•	•	-		•		•	*			•				•						•				•	-	
										•						0								0							
					•															•	•	•	•		•			•			
	•	•	•	•		•	•	•									•	•	•		•	•									

Fabric and flexible materials

Copper, brass, and copper alloys

Babbit, lead, zinc and their alloys

Electrical windings

Steel and wrought iron

Rubber, plastic, electrical insulation

Wood, with the grain

Wood, across the grain

Titanium

Beryllium

4.4 Location Identification

Fuse lage Stations

Locations along the length of a fuselage are identified by fuselage station (FS) numbers which represent the distance in inches from FS-0, a point chosen by the aircraft manufacturer from which all longitudinal measurements are made. For example, FS-199 is 199 inches aft of FS-0.

Water Lines

Vertical locations are identified by water lines (WL). Water line zero (WL-0) is a line chosen by the aircraft manufacturer as a vertical reference line. Locations above WL-0 are positive and those below are negative. WL+20 is a plane 20 inches above WL-0.

Butt Lines

Lateral locations are identified by butt lines (BL, or buttock lines) that are distances to the left or right in inches from BL-0, a vertical plane through the center of the fuselage. BL-36R is a vertical plane 36 inches to the right (when facing forward) from BL-0.

Wing and Horizontal Stabilizer Stations

These stations are locations in inches left or right, along the wing or stabilizer span measured from the center line of the fuselage,BL-0.

Fuselagestations and water lines

Section 5: Aircraft Electrical Systen:is

- 5.1 Electrical Symbols Page83
- 5.2 Alternating Current Terms and Values Page 91
- 5.3 Ohm's Law Relationships Page 92
- 5.4 Electrical Formulas Page 94
- 5.5 Electrical System Installation Page 101

5.1 Electrical Symbols

Conducto rs

Ground connection {earth ground)

Chassis ground connection (not necessarily at groundpotential)

Terminal strip

Terminal strip

Switches

Single-pole, double-throw switch

Double-pole, single-throw switch

Single-pole, single-throw switch

_2____

Double-pole, double-throw switch

Single-pole, double-throw switch- normallyclosed, momentarily open

Eight-position rotary switch

Pressure-actuated switch- closes on decreasing pressure

Pressure-actuated switch- closeson increasing pressure

Temperature-actuated switch- closeson decreasing temperature

Temperature-actuated switch- closes on increasing temperature

Relay switch

Solenoid switch

Power Sources

Battery

Generator

Thermocouple

Piezoelectric crystal

Capacitors

Fixed nonelectrolyic capacitor

Electrolytic capacitor

Variable capacitor

Inductors

Tapped resistor

1W

B-

Resistor installed external to LAU (line replaceable unit)

Temperature-sensitive resistor

Heater element resistor

I ndica tor s

-0----0-

Voltmeter

Ammeter

-©-

Wattmeter

Ohmmeter

Milliammeter

----e---

Microammeter

Semiconductor Devices

PNP bipolar transistor

Diac

Triac

_A	_A
P-channel	N-channel

– 1TL P-channel

Junction field effect transistor

Insulated gate field effect transistor

Logic Devices

-{>-

Inverter

Buffer or amplifier

AND gate

NANO gate

AND gate with one input having an active low

OR gate

NOR gate

EXCLUSIVE OR (XOR) gate

OR gate with one input having an active low

Three-state buffer

Operational amplifier

Connectors

Wire splice

Quick-disconnectconnector

5.2 AlternatingCurrent Terms and Values

Peak value: The maximum amplitude of current or voltage in one alternation.

Peak-to-peak value: The voltage or current measured from a positive peak to a negative peak.

rms value: Root mean square, or effective value. This is 0.707 times peak value. One amp rms of sine wave AC produces the same amount of heat as one amp of DC. One amp rms of sine wave AC has a peak value of 1.414 amp.

Cycle: One complete series of values of alternatingcurrent in which the voltage or current starts from zero, rises to a positive peak, drops back through zero to a negative peak, and then returns to zero.

Alternation: One half cycle of alternating current.

Period: The time required for one cycle of alternating current.

Frequency: The number of cycles of alternating current that occur in one second.

Phase: The angular relationship between the current and voltage in an AC circuit. Inductance and capacitance in a circuit cause the current to either lag or lead the voltage.

Power: Power in an AC circuit is determined by the voltage and the amount of current that is in phase with the voltage.

Power factor: The percentage of current in an AC circuit that is in phase with the voltage.

5.3 Ohm's Law Relationships

Ohm's law gives us the relationship between voltage, current, resistance, and power in an electrical circuit. When we know any two values, we can find either of the others by using the appropriate formula.

E = Voltage (volts) I = Current (amps) A = Resistance (ohms) P = Power (watts)

To visualize the relationships, use these circles. The shaded value is the product or the quotient of the unshaded values.

(E	E	E
(R	IR	IR

To Find E	Known Values I &A	Formula E = I X A
E	P& I	
E	P&A	$E = \sqrt{P \times R}$
	Ε&Α	
	P&E	
	P&R	

To Find	KnownValues	Formula
R	E& I	R=f
R	E&P	E2 R=p
A	P&I	R=!:' ₁₂
р	I& E	p =IX E
р	I &R	$P = 1^2 x R$
р	E&R	$P = R^{E2}$

Ι

5.4 Electrical Formulas

Formulas Involving Resistance

Resistors in series:

RT = A, + R2 + R3 +, ,,

 $RT{=}$ Total resistance $R_1,\,R_2,\,R_3{=}$ Value of individual resistances

Resistors of the same value in parallel:

 $\mathsf{Ar} = \overset{A}{n}$

Ar = Total resistanceA = Value of a single resistorn = Number of resistors

Two resistors of different value in parallel:

$$Ar = \frac{A.x A 2}{R1 + R2}$$

$$\begin{split} RT &= \text{Total resistance} \\ \text{A}_1 &= \text{Value of first resistor} \\ \text{R}_2 &= \text{Value of second resistor} \end{split}$$

To find the value of one resistor in a parallel combination when the total resistance and the value of the other resistor are known:

$$\begin{array}{rcl} A &- &-Ar_x & R2\\ , &- & \underline{A} & \underline{-A2} \end{array}$$

Ar = Total resistance
A₁ = Value of first resistor
A₂ = Value of second resistor

More than two resistors of different values in parallel:

$$Rr = \frac{1 + 1 + 1 + 1}{R_1 R_2 R_3 R_4}$$

Ar = Total resistance A,, R₂, R ₃, R ₄ = Value of each resistor

The total resistance of any number of resistors connected in parallel may be found by using a calculator with a reciprocal (1/x) key.

Enter the problem in this sequence:

 $(R_T)(1/x) + (R_2)(1/x) + (R_3)(1/x) + (R_4)(1/x) = (1/x)$

The number displayed after the (1/x) key is pressed the last time is the value of the total resistance.

Formulas Involving Capacitance

Capacity of a capacitor:

C = 0.2235 () (N - 1)

C = Capacity in picofarads

K = Dielectric constant

A = Area of plates in square inches

D = Thickness of dielectric in inches

N = Number of plates

Capacitors in parallel:

 $C_{T} = C_{1} + C_{2} + C_{3} + \cdots$

Cr= Total capacitance C, , C_2 , C_3 = Value of individual capacitors

Capacitors of the same value in series:

С Сr=-;,

Cr=Tollacapacitance C = Value of a single capacitor n = Number of capacitors

Two capacitors of different values in series:

 $\begin{array}{c} C, x \ \mathcal{C} \\ Cr = & \overline{C}, + C_2 \end{array}$

Cr = Total capacitance $C_{2} = Value of one capacitor$ $C_{2} = Value of other capacitor$

More than two capacitors of different values in series:

 $\begin{array}{c} C & - & 1 \\ r & - & 1 + 1 + 1 + 1 \\ C, & C2 & B; C:; \end{array}$

The total capacitance of any number of capacitors connected in series may be found by using a calculator with a reciprocal (1/x) key.

Enter the problem in this sequence:

 $(C_T) (1/x) + (C_2) (1/x) + (C_3) (1/x) + (C_4) (1/x) = (1/x)$

The number displayed after the (1/x) key is pressed the last time is the value of the total capacitance.

Charge stored In a capacitor:

O=CxE

Q=Charge in coulombs C = Capacitance in farads E = Voltage across the capacitor in volts
Energy stored in a capacitor:

W = Stored energy in joules (watt-seconds) C = Capacitance in farads E = Applied voltage in volts

Capacitive reactance:

Xe= Capac itive reactance in ohms 2n = A constant, 6.2832 F = Frequency in hertz C = Capacitance in farads

Because there are constants in both the numerator and the denominator, this formula can be changed to:

Xe= Capacitive reactance in ohms 159,200 = A constant (1,000,000+2n) F = Frequency in hertz C = Capacitance in microfarads

Formulas Involving Inductance

Inductors in series with no mutual inductance:

 $Lr = L_1 + L_2 + L_3 + \cdots$ Lr = Total inductance $L_1, L_2, L_3 = Value of each inductor$

Two inductors of different size in parallel with no mutual inductance:

$$Lr = \frac{L, x L2}{L1 + L2}$$

Lr = Total inductanceL₁, L₂ = Value of individual inductors More than two inductors of different size in parallel with no mutual inductance:

 $L_{T} = \frac{1}{1 + 1 + 1 + 1} \\ L_{1} \quad L_{2} \quad L_{3} \quad L_{4}$

LT = Total inductanceL ₁, L₂, L₃, L₄ = Value of individual Inductors

The total inductance of any number of inductors connected in parallel with no mutual inductance may be found by using a calculator with a reciprocal (1/x) key.

Enter the problem In this sequence:

 $(L_T) (1/x) + (L_2) (1/x) + (L_3) (1/x) + (L_4) (1/x) = (1/x)$

The number displayed after the (1/x) key is pressed the last time Is the total inductance

Mutual inductance of two coils:

LA - L o L M = - 4-

- LM = Mutual Inductance in the same units as that of the Individual Inductances
- LA = Total inductance of the two coils with their fields aiding
- $L_0 =$ Total inductance of the two coils with their fields opposing

Mutual Inductance of two inductors connected in series with fields aiding:

 $Lr = L_1 + L_2 + 2M$

Lr = Total inductance

- $L_1 =$ Inductance of the first inductor
- $L_2 =$ Inductance of the second inductor
- M = Mutual inductance

Total inductance of two inductors connected in series with fields opposing:

 $LT = L_1 + L_2 - 2M$

LT= Total inductance L_1 = Inductance of the first inductor L_2 = Inductance of the second inductor **M** = Mutual inductance

Coefficient of coupling:

К- _ М_____ - _<u>...JI</u>L х L2

$$\begin{split} &\mathsf{K}=\mathsf{Coefficient} \text{ of coupling}\\ &\mathsf{M}=\mathsf{Mutual inductance}\\ &\mathsf{L}_1=\mathsf{Inductance} \text{ of first inductor}\\ &\mathsf{L}_2=\mathsf{Inductance} \text{ of second inductor} \end{split}$$

Energy stored in an inductor:

 $L \times 1^2$ W-

W = Stored energy in joules (watt-seconds) L = Inductance in henries I = Current in amperes

Inductive reactance:

XL = 2 rcFL

 $\begin{array}{l} XL = \mbox{ Inductive reactance in ohms} \\ 2rc = A \mbox{ constant, } 6.2832 \\ L = \mbox{ Inductance in henries} \\ F = \mbox{ Frequency in hertz} \end{array}$

5: Aircraft Electrical Systems 99

Formulas Involving Both Capacitance and Inductance Resonant *Frequency*

The resonant frequency of an AC circuit is that frequency which causes the capacitive reactance and the inductive reactance to be the same. It may be found by the formula:

FR = Resonant frequency in hertz 211= A constant, 6.2832 L = Inductance in henries C = Capacitance in farads

T ot al Rea ctan ce

Current In a purely capacitive circuit leads the voltage by 90 degrees, and current in a purely inductive circuit lags 90 degrees behind the voltage.

Capacitive reactance and inductive reactance are 180 degrees out of phase with each other, and they cancel. Total reactance Is the difference between the two reactances and is the type of the greater reactance.

$$X_T = X_C - X_L$$
 or $X_T = X_L - X_C$

Imp edan ce

Impedance is the total opposition to the flow of alternating current, and it Is the vector sum of capacitive reactance, Inductive reactance, and resistance. It is found by the following formulas.

Impedance In a series circuit:

$$Z = \sqrt{R^2 + X^2}$$

Z = Impedance in ohms R = Total resistance in ohms

X = Total reactance in ohms

Impedance in a parallel circuit:

Z- <u>RxX</u> - <u>R2+ X2</u>

Z = Impedance in ohms

- R = Total resistance in ohms
- X = Total reactance in ohms

5.5 Electrical S ystem Installation

Selection of Wire Size

Aircraft electrical wire is measured in American Wire Gage (AWG) units. The larger the number, the smaller the diameter of the wire. The actual American wire gage, shown in Figure 5.5.1, is a circular piece of steel with notches cut in its periphery. The width of each notch is the diameter of the wire whose gage number is beside the notch.

Figure 5. 5.1 . An American wiregage Is used to determine the size of an aircraft electrical wire.

When selecting the proper gage of wire, consider both the currentcarrying capability of the wire and the voltage drop caused by it. The charts in Figure 5.5.2 give the current-carryingcapability of copper wire in sizes 20 through 0000, and aluminum wire in sizes 6 through 0000. When wires are routed in bundles, the maximum current is less than when the wire is routed by itself in free air. Wires in a bundle cannot readily dissipate heat.

Nominal system	Allowable voltage drop	
voltage	Continuous load	Intermittent load
14	0.5	1.0
28	1.0	2.0
115	4.0	8.0
200	7.0	14.0

Figure 5 .5 .2 . Allowable voltage drop in an aircraft electrical system

The allowable voltage drop in an aircraft electrical system is determined by both the nominal system voltage and whether the component is operating continuously or intermittently. The chart in Figure 5.5.3 gives the allowable voltage drops for the most commonly used aircraft electrical systems.

To find the correct size copper wire for a continuous load, use the chart in Figure 5.5.3.

For example: Find the size wire needed to supply 30 amps continuously to a component in a 28-volt electrical system. The wire must be 60 feet long.

- 1. Follow the 30-amp diagonal line down until it crosses the horizontal line for 60 feet in the 28-volt column.
- These lines cross between the vertical lines for 6-gage and 8-gage wires. Always use the larger wire, so choose a 6-gage wire. Thirty amps of current will notproduce more than the allowable 1-volt drop when it flows through 60 feet of 6-gage wire.
- 3. The intersection of these two lines is above curve 1, which means that a 6-gage wire carrying 30 amps of current can be routed in a bundle without causing excessive heat. This can be proved by the chart in Figure 5.5.4, which shows that a 6-gage copper wire in a bundle can carry 60 amps.

To find the correct size copper wire for an Intermittent load, use the chart In Figure 5.5.5.

For example: Find the size wire needed to supply 200 amps to a landing gear motor ln a 28-volt electrical system. The wire must be 10 feet long.

- 1. In this example, the current-carrying capability of the wire Is the limiting factor, rather than the voltage drop. Assume the wire will be routed by itself In free air. The chart In Figure 5.5.4 shows that at least a 1-gage wire must be used. This size wire will carry 211 amps in free air.
- 2. Follow the 200-amp diagonal line down until it intersects the vertical line for a 1-gage wire. This intersection Is about the location of a horizontal line for 67 feet In the 28-volt column. This means that it would take 67 feet of 1-gage wire to cause a 2-volt drop (the voltage drop allowed for an intermittent load In a 28-volt system). The wire is only 10 feet long, so there will be much less than the allowable voltage drop.

Figure 5.5.3. Wire selection chart for continuous loads

!!' >--1 m [• 1 • 1 • 1 · · · · · · · · · · · ·

Copper wire current-carrying capabfllty				
Wire size (gage)	Max. amps single Max. amps wir wire in free air bundle or cond			
AN-20 AN-18 AN-16 AN-14 AN-12 AN-10 AN-8 AN-6 AN-4 AN-2 AN-1 AN-2 AN-1 AN-0 AN-00 AN-000	11 16 22 32 41 55 73 101 135 181 211 245 283 328	7.5 10 13 17 23 33 46 60 80 100 125 150 175 200		
AN-0000	380	225		

Aluminum wire current -carrying capability				
Max. amps singleMax. amps wire IrWire size (gage)wire In free airbundle or conduit				
AL-6 AL-4 AL-2 AL-0 AL-00 AL-000 AL-000	83 108 152 202 235 266 303	50 66 90 123 145 162 190		

Figure 5.5.4. Currentarryingapability of copper and aluminum wire

...

Note s on Wire Installation

- 1. All wires should be marked along their entire length with the wire identification number specified by the aircraft manufacturer.
- 2. Wires should have a 6-inch diameter loop near their connection to the component to which they are connected, in order to accommodate any wire tensions that result from aircraft structural deformations during a crash.
- 3. Electrical wire bundles should be routed along the strongest aircraft structural members, and should not cross areas where there is likely to be severe structural deformation during a crash.
- 4. When electrical wire bundles pass through a structural member, the holes should be 8 to 12 times the diameter of the bundle. The edges of the hole should be protected with grommets, and the wire bundle should be securely clamped to the structure.
- 5. If a wire bundle is routed parallel to a fluid line, the wire bundle should be above the fluid line and should not be secured to the line.
- 6. No more than four wire terminals should be secured to any single stud in a terminal strip. If more wires must be connected at a single point, use more than one stud, and connect the studs with metal bus bars.

Figure 5.56. Never install more than four wire terminals on any single terminal-strip lug. If more wires should be connected, Join two adjacent lugs with a connector strip.

- 7. All bonding jumpers should be as short as possible and must not have more than 0.003-ohm resistance. The jumper must not interfere with the free movement of the component that is being bonded.
- 8. When a ground connection is made to an anodized aluminum alloy component, the oxide film must be removed at the location where the connection is made. After the connection is made, the area must be protected against corrosion.

- When wire bundles must be routed through areas where they can likely be damaged, they should be protected by routing them through a flexible or rigid conduit.
 - a. The conduit must not be installed in such a way that ii can be used as a step or a hand hold.
 - b. The inside diameter of the conduit must be large enough that the **wire** bundle does not fill more than 80% of the conduit area.
 - c. Drain holes must be provided at the lowest point in a conduit run.
 - d. Rigid conduit must not be flattened in the bends enough to decrease its minimum diameter to less than 75 percent of the original diameter.
 - e. All burrs must be removed from the ends of the conduit and from any drain holes.
 - f. Do not use a smaller bend radius for rigid conduit than is allowed by the chart in Figure 5.5.7.
 - g. Do not use a smaller bend radius for flexible aluminum or brass conduit than is allowed by the chart in Figure 5.5.8.

Bend radii allowed for rigid conduit		
Nominal tube O.D.	Minimum bend	
(inches)	radius (inches)	
1/8	3/8	
3/16	7/16	
1/4	9/16	
3/8	15/16	
1/2	1-1/4	
5/8	1-1/2	
3/4	1-3/4	
1	3	
1-1/4	3-3/4	
1-1/2	5	
1-3/4	7	
2	8	

Figure 5.5.7. Minimum bend radius for rigid electrical conduit

in or brass conduit	
Minimum bendradius (inches)	
2-1/4 2-3/4 3-3/4 3-3/4 3-3/4 4-1/4 5-3/4 8 8-1/4 9 9-3/4	

Figure 5.5.8. Minimum bend radius for flexible electrical conduit

10. Securely attach all **wire** bundles to the aircraft structure with cushioned clamps. There should be no more slack between supports than that which will allow a 1/2-inch deflection.

Figur e 5.5.9. Support wire bundles from aircraft tubing with clamps. The clamp around the wire should be cushioned.

11. Wrap the cord twice around wire bundles secured with individual ties, and secure them with a clove hitch and a square knot.

Switch Derating Factors

Incandescent lamps, motors, relays, and heaters all allow a large amount of current to flow when the switch is first closed. Soon after the current begins to flow, its value drops off to a nominal value. Because of this high inrush, switches in these circuits must be derated. The chart in Figure 5.5.10 shows the derating factors to be used.

Nominal system DC voltage	Type of load	Derating factor
2 4 volts 2 4 volts 2 4 volts 2 4 volts 1 2 volts 1 2 volts 1 2 volts 1 2 volts 1 2 volts	Lamp Inductive Resistive Motor Lamp Inductive Resistive Motor	8 4 2 3 5 2 1 2
Example: A switch installedin a 24-volt circuit to control a IDO-watt incandes centlamp must have a current rating of more than 33.3 amps.		

Figure 5.5,10. Switch derating factors

Wire and Circuit Protectors

Fuses and circuit breakers are installed in an aircraft to protect the wiring from overheating due to excessive current. The chart in Figure 5.5.11 shows the size circuit protectors that should be used with the various gage wires.

AN copper wire (gage)	Circuit breaker (amps)	Fuse (amps)	
22	5	5	
18	10	5 1 0	
16	15	10	
14 12 10	20 25 35	15 (30) 20	
8 6	50 80	(40) 30 50 70	
4 2 1 0	100 125	70 100 150 150	
Values in parentheses may be substituted when the indicated ratings are not available			

Figure 5.5.11. Wire and circuit protector chart

5: Aircraft Electrical Systems 109

MS Electrical Connectors

MS27472	WALL MOUNT RECEPTACLE
MS27473	STRAIGHT PLUG
MS27474	JAM NUT RECEPTACLE
MS27475	HERMETIC WALL MOUNT RECEPTACLE
MS27476	HERMETIC BOX MOUNT RECEPTACLE
MS274TT	HERMETIC JAM NUT RECEPTACLE
MS27478	HERMETIC SOLDER MOUNT RECEPTACLE
MS27479	WALL MOUNT RECEPTACLE (NOTE 1)
MS27480	STRAIGHT PLUG (NOTE 1)
MS27481	JAM NUT RECEPTACLE (NOTE 1)
MS27462	HERMETIC WALL MOUNT RECEPTACLE (NOTE 1)
MS27483	HERMETIC JAM NUT RECEPTACLE (NOTE 1)
MS27484	STRAIGHT PLUG, EMI GROUNDING
MS27497	WALL RECEPTACLE, BACK PANEL MOUNTING
MS27499	BOX MOUNTING RECEPTACLE
MS27500	90' PLUG (NOTE I)
MS27503	HERMETIC SOLDER MOUNT RECEPTACLE (NOTE 1)
MS27504	BOX MOUNT RECEPTACLE (NOTE 1)
MS27508	BOX MOUNT RECEPTACLE, BACK PANEL MOUNTING
MS27513	BOX MOUNT RECEPTACLE, LONG GROMMET
MS27664	WALLMOUNT RECEPTACLE, BACK PANEL MOUNTING (NOTE 1)
MS27667	THAU-BULKHEADRECEPTACLE

Figure,5 ,5 10. MS Electrical Connector Information

NOTE

1.ACTIVE	SUPERSEDES
MS27472	MS27479
MS27473	MS27480
MS27474	MS27481
MS27475	MS27482
MS27477	MS27483
MS27473 WITH	MS27500
MS27507 ELBOW	
MS27478	MS27503
MS27499	MS27504
MS27497	MS27664
MS27478 MS27499 MS27497	MS27503 MS27504 MS27664

CLASS

- E ENVIRONMENT RESISTING-BOX ANDTHRU-BULKHEAD MOUNTING TYPES ONLY (SEE CLASST)
- P POTTING INCLUDES POTTING FORM AND SHORT REAR GROMMET
- T ENVIRONMENT RESISTING-WALL AND JAM-NUT MOUNTING RECEPTACLE AND PLUG TYPES:THREAD AND TEETH FOR ACCESSORY ATTACHMENT
- Y HERMETICALLY SEALED

FINISH

- A SILVER TO LIGHTIRIDESCENT YELLOW COLOR CADMIUM PLATE OVER NICKEL (CONDUCTIVE) s-c TO+1S0C (INACTIVE FOR NEW DESIGN)
- B OLIVE DRABCADMIUM PLATE OVER SUITABLE UNDERPLATE (CONDUCTIVE). -65"C TO +175' C
- C ANODIC (NONCONDUCTIVE), s-c TO+175 C
- D FUSED TIN, CARBON STEEL (CONDUCTIVE). ·65' C TO 1SO'C
- E CORROSION RESISTANT STEEL (GRES), PASSIVATED (CONDUCTIVE), 65' C TO +20-0 c
- F ELECTROLESS NICKEL COATING (CONDUCTIVE), 65"C TO+200"C
- N HERMETIC SEALOR ENVIRONMENT RESISTING GRES(CONDUCTIVE PLATING), -65 C T0 +200"C

CONTACT STYLE

- A WITHOUT PINCONTACTS
- B WITHOUT SOCKETCONTACTS
- C FEEDTHROUGH
- P PIN CONTACTS-INCLUDINGHERMETICS WITH SOLDER CUPS
- S SOCKET CONTACTS-INCLUDINGHERMETICS WITH SOLDER CUPS
- X PIN CONTACTS WITH EYELET (HERMETIC)
- Z SOCKET CONTACTS WITH EYELET (HERMETIC)

POLARIZATION

- A.B NORMAL-NO LETTER REQUIRED
- C,OR

D

Figure 5.5.12. MSElectrical Connector Information (continued)

Wall receptacle

Cable receptacle

Box receptacle

Quick-disconnect straight plug

Straight plug

Plug

Angle plug

Angle plug

Figure 5.5. 13. Typical MS Electrical Connectors

Receptacle

Receptacle

Facing viewplug

Plug

Triple insert plug

Quadruple insertreceptacle

Single insert plug

Double insert receptacle

Figure 5.5 . 13. Typical MS Electrical Connectors (continued)

Receptacle

Plug

Typical rack and panel connectors

Plug

Receptacle

Figure 5.5.13 . Typical MS Electrical Connectors (continued)

Resi stor Color Code

The resistance in ohms of a composition resistor Is designated by a series of colored bands around one end, as shown In Figure 5.5.14.

- The first colored band (nearest the end) represents the first significant figure in the resistance.
- The secondband represents the second significant figure.
- The third band represents the multiplier, or the number of zeros to add to the two significant figures. If this band Is gold, the resistance Is less than ten ohms, and the multiplier is 0.1. If it is silver, the resistance Is less than one ohm and the multiplier is O.Q1.
- The fourth band from the end shows the tolerance of the resistor in a plus or minus percentage.

Resistance is 47,000,000 ohms± 10%

Colors for the first and second significant figure (first and second band), and multiplier (third band):

Colors for the fractional multiplier (third band):

Examples:

A resistor marked red, red, orange, silver has a resistance of 22,000 ohms \pm 10%.

A resistor marked brown, green, brown has a resistance of 150 ohms \pm 20%.

A resistor marked yellow, violet, gold has a resistance of 4.7 ohms.

Alrc:raft Storage Batt eries Lead-Acid Batterle•

To prevent a lead-acid battery from overheating, limit the charging voltage to 2.35 volts per cell unless the battery manufacturer specifies a different voltage tor the specific battery.

	Freezing ooint	
Specific gravity	· C	"F
1 300	-70	-95
1 275	-62	-80
1.250	-52	-62
1.225	-37	-35
1.200	-26	-16
1175	-20	-4
1.150	-15	+5
1.125	-10	+13
1.100	-8	+19

The freezing temperature of the electrolyte in a lead-acid battery is determined by its specific gravity as indicated in Figure 5.5.15.

Figure 55 . f 5. The freezing temperature of the electrolyte ma lead-acid battery Is determined by its specific gravity.

When measuring the specific gravity of the electrolyte, a correction must be applied 1f its temperature is different from the standard of 80°. If the temperature Is greater than 80°F, add four points to the specific gravity for each ten degrees. If the temperature 1s lower than 80°F, subtract fourpoints for each ten degrees. The correction is shown in the chart 1n Figure 5.5.16.

Other cautions for lead-acid batteries are:

- Neutralize any spilled electrolyte with bicarbonate of soda and water.
- Remove all traces of corrosion and treat any bare metal in the battery box or adjacent structure with an acid-proof paint.
- Be sure the battery box drain is open and ii a sump jar is used, be sure the pad 1s saturated with a solution of bicarbonate of soda and water.
- If electrolyte 1s to be mixed, always pour the acidinto the water DONOT pour water into the acid.
- Do not service lead-acid batteries in the same area as is used for servicing nickel-cadmium batteries.

Electrolyte temperature		Points to be subtracted or added to specific	
00	OF	gravity reading	
60	140	+24	
55	130	+20	
49	120	+16	
43	110	+12	
38	100	+8	
33	90	+4	
27	80	0	
23	70	-4	
15	60	-8	
10	50	-12	
5	40	-16	
-2	30	-20	
-7	20	-24	
-13	10	-28	
-18	0	-32	
-23	-10	-36	
-28	-20	-40	
-35	-30	-44	

Figure s .5.16. Correction for nonstandard temperature of the electrolyte of a lead-acid battery.

Nickel-Cadmium Batteries

Be sure the top of the battery is clean, and that all of the cell connectors are free from corrosion and are properly torqued.

The electrolyte level varies with the state of charge of the battery. Never add electrolyte to the battery while it is installed in the aircraft. Remove the battery, clean and inspect it, and add distilled or demineralized water according to the battery manufacturer's recommendation.

Other cautions for nickel-cadmium batteries are:

- Neutralize spilled electrolyte with a solution of 3 percent acetic acid, vinegar, or lemon juice, and wash the area with fresh water.
- Do not service nickel-cadmium batteries in the same area used for leadacid batteries.

Section 6: Aircraft Materials

<i>6.1</i> 6.2	Composition of Wrought Aluminum Alloys Four-Digit Designation System for Wrought Aluminum Alloys Page 122	Page 121	
6.3	Mechanical Properties of Aluminum Alloys	Page 123	
6.4	Temper Designations for Aluminum Alloys	Page 124	
6.5	Temperatures for Heat Treatment of Aluminu	m Alloys	Page 125
6.6	Bearing Strength (in pounds) of Aluminum All	oy Sheet	Page 126
6.7	Shear Strength of Aluminum Alloy Rivets	Page 127	
6.8	SAE Class ification of Steel Page 128		
6.9	Strength of Steel Related to its Hardness	Page 129	
6.10	Color of Steel for Various Temperatures	Page 130	
6.11	Color of Oxides on Steel at Various Tempering Temperatures Page	131	

6.1 Composition of Wrought Aluminum Alloys

Percent of alloying elements; aluminum and normal impurities constitute remainder of metal.

Alloy Number	Silicon Co	opper Mar	nganese Magi	nesium Chron	nium Zinc	
1100	- 99.00%	aluminum	minimum-			
2017		4.0	0.5	0.5		
2024		4.5	0.6	1.5		
2117		2.5		0.3		
3003			1.2			
5052				2.5	0.25	
5056			0.10	5.2	0.10	
6061	0.6	0.25		1.0	0.25	
7075		1.6		2.5	0.30	5.6

6.2 Four-DigitDesignation System for Wrought Aluminum Alloys

First digit: Principal alloying element Second digit: A measure of the limits for impurities Third and fourth digits: The amount of the alloying element in the metal

Number Group
1xxx
2xxx
3xxx
4xxx
5xxx
6xxx
7xxx
8xxx
9xxx

Pure aluminum is the softest and most corrosion-resistant form of aluminum, but it is not generally used in aircraft construction or maintenance. 1100 is the most widely used form of commercially pure aluminum used in aircraft maintenance. It can only be used in nonstructural applications, such as fairings.

Copper is alloyed with aluminum to increase its strength and make it heat-treatable, but this makes it susceptible to corrosion. 2024 is the most widely used alloy in this series. To make a 2024 sheet more corrosionresistant, a thin layer of pure aluminum is rolled onto its surface when the sheet metal is made. This process is called "cladding." Most of the rivets used in sheet metal construction are made of 2117, 2017, or 2024.

Manganese makes the aluminum stronger and easier to weld. 3003 is the most widely used alloy in this series because it is soft and easy to form. It is used for cowling, propeller spinners, and wheel pants.

Magnesium adds strength to the aluminum, which makes it more difficult to form. 5052 is widely used for fluid lines; in its sheet form it is used for fuel tanks because it is weldable and reasonably corrosion-resistant. 5052 is not heat-treatable.

Magnesium and silicon give aluminum strength, malleability, and weldability. 6061 is used in applications in which heat treatability, ease of forming, medium strength and corrosion-resistance are important.

Zinc gives aluminum highstrength, but makes it expensive and difficult to form. 7075 is the alloy used in modern aircraft where high strength and light weight are the primary considerations.

6.3 Mechanical Properties of Aluminum Alloys

Alloy and temper*	Tensile stre Ultimate	ngth, psi Yield	Brinell hardness 500 kg load, 10 mm ball
1100-0	13,000	5,000	23
1100-H18	24,000	22,000	44
2017-0	26,000	10,000	45
2017-T4	62,000	40,000	105
2024-0	27,000	11,000	47
2024-T36	72,000	57,000	130
2024-T4	68,000	47,000	120
Alclad 2024-0	26,000	11,000	na
Alclad 2024-T36	67,000	53,000	na
3003 - 0	16 ,000	6,000	40
3003-H18	29,000	27,000	10
5052-0	28,000	13,000	47
5052-H38	42,000	37,000	77
6061-0	18,000	8,000	30
6061 - T6	45,000	40,000	95
7075-0	33,000	15,000	60
7075-T6	83,000	73,000	150
Alclad 7075-0	32,000	14,000	na
Alclad 7075-T6	76,000	67,000	na

*SeeSection 6.4, "Temper Designations"

6.4 Temper Designations for Aluminum Alloys

Heat-Treatable Alloys

- ·O..... Annealedtemper of wrought alloys
- F..... As-fabncated condition for wrought alloys and as-cast for casting alloys
- -T2.....Annealed temper of casting alloys
- •T3....... Solution heat-treated followed by strain hardening; a seconddigit, if used, Indicates the amount of strain hardening
- -T4.......Solution heat-treated followed by natural aging at room temperature
- -TS...... Artificially aged at an elevated temperature
- -T6......Solution heat-treated followed by artificial aging
- -T7......Solution heat-treated followed by stabilization
- -TSSolution heat-treated followed by strain hardening, then artificial aging
- -T9.....Solution heat-treated followed by artificial aging, then strain hardening

Non-Heat-Tre atab le Alloys

- -0.....Annealed
- -H1...... Strain hardened by cold-working; a second digit indicates the degree of strain hardening
- -H12 1/4 hard
- ·H14.....1/2 hard
- ·H18.....Full hard
- -H19.....Extra hard
- ·H2...... Strain hardened by cold-working, then partially annealed
- ·H3......Strain hardened and stabilized

6.5 Temperatures for Heat Treatment of Aluminum Alloys

Alloy	Anneal temp. •F	ing time hours	Solution temp. •F	Heat treat. temper	Precip. H temp. •F	leattrea time hours	at. temper
1100	650	2-3					
2017	775	2-3	940	-T4			
2024	775	2-3	920	-T4	375	7-9	-T86
2117	775	2-3	940	-T4			
3003	775	2-3					
5052	650	2-3					
6061	775	2-3	970	-T4	320	16-20	-T6
7075	775	2-3	870	-W	250	24-28	-тб

6.6 Bearing Strength (in pounds) of Aluminum Alloy Sheet

Sheet			Dia	meter c	of rivet			
(inches)	1/16	3/32	1/8	5/32	3/16	1/4	5/16	3/8
0.014	71	107	143	179	215	287	358	430
0.016	82	123	164	204	246	328	410	492
0.018	92	138	184	230	276	369	461	553
0.020	102	153	205	256	307	410	512	615
0.025	128	192	256	320	284	512	640	768
0.032	164	245	328	409	492	656	820	984
0.036	184	276	369	461	553	738	922	1,107
0.040	205	307	410	512	615	820	1,025	1,230
0.045	230	345	461	576	691	922	1,153	1,383
0.051	261	391	522	653	784	1,045	1,306	1,568
0.064		492	656	820	984	1,312	1,640	1,968
0.072		553	738	922	1,107	1,476	1,845	2,214
0.081		622	830	1,037	1,245	1,660	2,075	2,490
0.091		699	932	1,167	1,398	1,864	2,330	2,796
0.102		784	1,046	1,307	1,569	2,092	2,615	3,138
0.125		961	1,281	1,602	1,922	2,563	3,203	3,844
0.156		1,198	1,598	1,997	2,397	3,196	3,995	4,794
0.188		1,445	1,927	2,409	2,891	3,854	4,818	5,781
0.250		1,921	2,562	3,202	3,843	5,125	6,405	7,686
0.313		2,405	3,208	4,009	4,811	6,417	7,568	9,623
0.375		2,882	3,843	4,803	5,765	7,688	9,068	11,529
0.500		3,842	5,124	6,404	7,686	10,250	12,090	15,372

6.7 Shear Strength of Aluminum Alloy Rivets

Single-Shear Strength (in pounds) of Aluminum-Alloy Rivets

Ri vet comp .	Strength of rivet		Diamet er of ri vet (Inches)						
(alloy)	(psi)	1/16	3/32	1/8	5/32	3/16	1/4	5/16	3/8
2117-T	27,000	83	186	331	518	745	1,325	2,071	2,981
2017 - T	30,000	92	206	368	573	828	1,472	2,300	3,313
2024-T	35,000	107	241	429	670	966	1,718	2,684	3,865

Double-Shear Strength (in pounds) of Aluminum-Alloy Rivets

R ivet	S tr e ngth		D ia met e r of riv e t						
comp.	ornvet			(11)	iche s)				
(a llo y)	(psi)	1/16	3/32	1/8	5/32	3/16	1/4	5/16	3/8
2117-T	27,000	166	372	662	1,036	1,490	2,650	4,142	5,962
2017-T	30,000	184	412	736	1,146	1,656	2,944	4,600	6,626
2024-T	35,000	214	482	858	1,340	1,932	3,436	5,368	7,730

6.8 SAE Classification of Steel

Type of steel

Identification number

Type of otool	Indinibol
Carbon steels	xxx
Plain carbonsteel	xx
Free cutting steel	XX
Manganese steels (Manganese 1.60 to 1.90%)	xx
Nickel steels	xxx
3.50% nickel	xx
5.00% nickel	XX
Nickel chromium steels	xxx
9.7% nickel, 0.07% chromium	xx
1.25% nickel, 0.60% chromium	XX
1.75% nickel, 1.00% chromium	xx
3.50% nickel, 1.50% chromium	xx
Corrosion and heat resisting	xxx
Molybdenum steels	XX
Chromium molybdenum steels	xx
Nickel chromium molybdenum steels	xx
Nickel molybdenum steels	
1.75% nickel, 0.25% molybdenum	XX
3.50% nickel, 0.25% molybdenum	XX
Chromium steels	Sxxx
Low chromium	XX
Medium chromium	xxx
Corrosion and heat resisting	xxx
Chromium vanadium steels	xxx
1.00% chromium	xx
National emergency steels	xxx
Silicon manganese steels	xxx
2.00% silicon	xx

6.9 Strength of Steel Related to its Hardness

Rockwell			Rockwell		
C-Scale	Brinell	Tenslle	C-Scale	Brinell	Tensile
hardness	hardness	strength	hardness	hardness	strength
number	number	1,000 psi	number	number	1,000 psi
52	500	262	30	286	142
51	487	253	29	279	138
50	475	245	28	271	134
49	464	239	27	264	131
48	451	232	26	258	127
47	442	225	25	253	124
46	432	219	24	247	121
45	421	212	23	243	118
44	409	206	22	237	115
43	400	201	21	231	113
42	390	196	20	226	110
41	381	191	(18)	219	106
40	371	186	(16)	212	102
39	362	181	(14)	203	98
38	353	176	(12)	194	94
37	344	172	(10)	187	90
36	336	168	(8)	179	87
35	327	163	(6)	171	84
34	319	159	(4)	165	80
33	311	154	(2)	158	77
32	301	150	(0)	152	75
31	294	146			

Numbers in parentheses () are beyond the normal range of the Rockwell C-Scale.

6.10 Color of Steel for Various Temperatures

	Temperature of steel		
Color of steel	°F	•C	
Faint red			
Blood red	<u>.</u>	566	
Dark cherry	1,075		
Medium cherry	1,250		
Cherry (full red)	1,375	746	
Bright red			
Salmon			
Orange		941	
Lemon			
Light yellow			
White		1,204	
Dazzling white		1,288	

6.11 Color of Oxides on Steel at Various Tempering Temperatures

Temperature

Oxidecolor	°F	•C
Pale yellow	428	
Straw	446	230
Golden yellow		
Brown	491	255
Brown with purple spots	509	
Purple	531	
Dark blue	550	
Bright blue		297
Paleblue		321

To temper a small tool, first harden it by heating it until it is cherry red, and then quench it in oil or water. Polish the hardened tool and then reheat it until the correct color oxide forms on the polished surface. The first oxides to form are pale yellow, and they progress through darker yellows, brown, purple and shades of blue. When the correct color oxide forms, quench the tool again.

The correct color of oxides for tempering small tools are:

Tool	Oxide Color
Scribers, scrapers and hammer faces	Pale yellow
Center punches and drills	Golden yellow
Cold chisels and drifts	Brown
Screwdrivers	Purple
Section 7: Tools for Aircraft Maintenance

7.1	Measuring and Layout Tools Page 135			
7.2	Holding Tools Page 141			
7.3	Safety Wiring Tools Page 143			
7.4	Bending and Forming Tools Page 144			
7.5	Cutting Tools Page 145			
7.6	Hole Cutting Tools Page 151			
7.7	Threads and Threading Tools Page 159			
7.8	Torque and Torque WrenchesPage 162			
7.9	Pounding Tools Page 166			
7.10	Punches Page 167			
7.11 Wrenches Page 169				
7,12 Screwdrivers Page 173				

7.1 Measuring and Layout Tools

Steel Rule

Forgreater accuracy, when making a measurement with a steel rule do not use the end of the rule, but measure the distance between two marks away from the end.

Hook Rule

Hook rules are a special type of steel rule that are usually stiff and have a hook on one end accurately aligned with the end of the rule, for measuring from the edge of an object where a radius is involved.

Combination Set

A combination set consists of a 12-inch steel rule with three heads held onto the rule by clamps. The stock head converts the rule into a square to measure 90° and 45° angles. The protractor head can be set to measure any angle between the rule and the bottom of the head. When the two arms of the center head are heldagainst a circular object, the edge of the rule passes across its center.

Dividers

Dividers are used to transfer distances from a steel rule to a piece of sheet metal that is being laid out. They are also used for dividing a line into equal increments.

Outside Calipers

On outside calipers, the ends of the legs are pointed inward so that the outside of an object can be measured. Adjust the legs so the ends are exactly the same distance apart as the outside of the object, and then measure the distance between the ends with a steel rule.

Inside Calipers

Adjust the legs of inside calipers so the ends exactly fit into the object being measured, and then measure the distance between the ends with a steel rule.

Hermaphrodite Calipers

Hermaphrodite calipers are used to scribe a line along a piece of material a specific distance from the edge.

Scriber

Scribers have a needle-sharppoint used to mark very line lines on the surface of a piece of metal to be cut. Scribed lines on highly stressed metal can cause stress risers.

Vernier Calipers

Vernier calipers are used to make rapidand accurate inside and outside measurements over a greater range than that of a micrometer caliper. Each inch on the main scale is divided into 10 numbered increments, each representing 1/10 inch (0.1 inch). One inch on the vernier scale is divided into 25 increments, with each increment representing 1/25 inch or 0.040 inch.

How to Read the Vernier Seate

The vernier scale's "zero" is beyond the main scale's 3-inch mark (3.000). It is also past the 4/10-inch mark (0.400), and past one of the 1/40-inch marks (0.025). Only one mark on the vernier scale aligns with a mark on the main scale: the "11" mark (see asterisk in figure). Add 0.011 to the total: 3.000 + 0.400 + 0.025 + 0.011 = 3.436 inches.

Micrometer Caliper

Micrometer calipers are available as inside and outside calipers, with ranges from 0 to 1 inch, to special calipers that measure up to 60 inches. Standard micrometer calipers can be read to 0.001 inch (one one thousandth of an inch) and vernier micrometer calipers can be read to 0.0001 inch (one ten thousandth of an inch).

How to Read the Vernier Micrometer Scale

In the figure shown, the thimble was screwed out more than eight complete turns, which moved the spindle out two tenths of an inch (0.200): then it stopped, before another turn, with the reference line on the barrel between the 22 and 23 thousandth-inch marks on the thimble. The measuring faces are between 0.222- and 0.223inch apart. The "5" mark on the vernier scale lines up with one of the marks on the thimble. This means that the spindle moved out five ten thousandths of an inch beyond 0.222. The total separation of the measuring faces is 0.2225 inch.

In the metric example, the thimble moved out more than 8.5 mm, and then more than 25 gradualions, or 0.25 mm, beyond the reference mark. The vernier mark representing 6 divisions is aligned with one of the marks on the thimble, indicating the spindle moved 0.006 mm beyond 0.25. The total separation of the measuring faces is therefore 8.5 + 0.25 + 0.006 = 8.756millimeters .

Dial Indicator

Dial indicators are used to measure end-play in shaft installations, gear backlash, bevel gear preload, and shaft out-of-round or runout.

Feeler Gages

Feeler gages are used for measuring clearances in valve trains and breaker points, gear backlash, piston ring end-gap and side clearance, and the flatness of objects when used with a precision surface plate.

Smal-I Hole Gages

Small holes, up to approximately 1/2-inch in diameter, may be accurately measured with small-hole gages. Place a ball-type small-hole gage into the hole to be measured and twist the knurled end of the handle to expand the ball enduntil it exactly fits in thehole. Remove the gage and measure its diameter with a vernier micrometer caliper.

Tel e scoping Gages

Select the gage with the proper range and place it in the hole. Loosen the knurled end of the handle to release the hardened steel plungers in the telescopinghead. This allows an internal spring to force the plungers out against the walls of the cylinder bore. Hold the gage so the T-head is perpendicular to the inside wall of the bore and tighten the end of the handle. Remove the gage and measure the distance between the ends of the plungers with a vernier micrometer caliper.

7.2 HoldingTools

Vise s Bench Vise

Bench vises normally have replaceable serrated jaws to hold the material without slipping and are mounted on a swiveling base. The size of a vise is indicated by the width of the jaws, which normally range from 3-1/2 to 6 inches.

Drill Press Vise

Drill-press vises have a flat bottom with slots which allow them to be bolted to the table of a drill press.

Pliers

Combination/Slip Joint Pliers

Standard pliers that have serrated jaws for gripping round objects and flat jaws for holding flat materials. When the jaws are open wide, the handle pivot may be slipped from one pivot hole to the other, allowing the jaws to open wider to hold larger objects.

Water Pump Pliers

Also called adjustable-joint pliers. The long handles are for applying force to the jaws and torque to the object being turned. Available with a slip-joint adjustment or a tongue and groove type of adjustment that cannot slip, in lengths from 4-1/2 inches with parallel jaws that open to 1/2 inch, to 16 inches with jaws that open to more than 4 inches.

Vise-Grip®P li e rs

These patented locking pliers have a knurled knob in the handle that adjusts the opening of the jaws. When the handles are squeezed together, a compound-lever action applies a tremendous force to the jaws, and an over-center feature holds them tightly locked on the object between the jaws.

Needle-Nose Pliers

Used to hold wires or small objects and to make loops or bends in electrical wires. Some have straight jaws and others are bent to reach into obstructed areas; available in lengths from 4-1/2 to more than 10 inches.

7.3 Safety Wiring Tools

Diagonal Cutting Pliers

Diagonal cutters. or "dikes," are used to cut safety wire and cotter pins. The name of these pliers is derived from the shape of the jaws that have an angled cutting edge.

Duckbill Pliers

Duckbill pliers have long handles and wide serrated jaws that hold safety wire firmly while it is being twisted.

Safety Wire Twisting Tool

This safety-wiringtoolgrips wire securely, and the jaws lock on the wire; when the knob in the handle is pulled out, the tool twists the safety wire with a uniform twist. Can be used to give wire a left-hand or right-hand twist.

7.4 Bendingand Forming Tools

Tools for Making Straight Bends and Curves Cornice Brake

The cornice, or leaf brake is a heavy shop tool used to make straight bends across a piece of sheet metal. The bendradius appropriate for the thickness and temper of the metal can be chosen by using the appropriate radius block on the upper jaw of the brake.

Box Brake

Abox, or finger brake is similar to a cornice brake, except the upper jaw is made up of a number of heavy steelfingers so all four sides of a box can be folded up.

Press Brake

Apressbrake is used when a large number of duplicate pieces of material must be made with exactly the same amount of bend. The metal is placed over the female die whose inside radius is the same as the outside radius of the finished bend. A matching male die, or punch, with the correct radius forces the material into the die with energy stored in a large flywheel or with hydraulic pressure. Angles and channels are formed on press brakes.

Slip Roll Former

Used for making large radius bends across a piece of sheet metal. The metal is clamped between the drive roller and the gripping roller, and the handle is turned to pull the metal through the machine against the radius roller, which is adjusted to control the radius of the bend.

Forming Compound Curves in Sheet Metal English Wheel

Aluminum alloy sheets are formed by stretching them, which is initially done with a soft mallet and a sandbag, resulting in a rough surface that must be smoothed out. The smoothing is done by moving the stretched aluminum sheet back and forth between the two rollers in an English wheel. The upper roller is a large cast-iron wheel with a highly polishedand very slightly concave surface. A smaller, lower wheel is adjustable so it can be moved closer to or further from the upper wheel. The lower wheel has a convex surface , and there are a number of wheels available with differing radii to vary the radius of the metal being formed. The metal being worked is moved back and forth between the two wheels to smooth and form it.

7.5 Cutting Tools

Shears

Throatless Shears

Throatless shears have two short cutting blades that cut much like a pair of scissors. The lower blade is fixed to the base and the upper blade is operated by a long hand, le

Squar ing Shears

Foottreadle-operatedhears can make a straight cut across aluminum alloy sheets up to approximately 0.051-inch thickness and mild steel of 22-gage or thinner. Poweroperated shears that use a small electric motor to store a large amount of energy in a heavy flywheel can cut much thicker sheets. Place the metal to be cut on the bed and square it by holding it against the squaring fence. Lock the hold-down clamp in place to hold the metal tight on the table and keep your fingers out of the way of the' blade. The blade is angled so that it slices its way through the sheet when the foot-treadle is pressed or when the energy stored in the flywheel forces the blade down.

Scroll Shears

Used to pierce a piece of sheet metal and cut irregular curves on the il'ISide of the sheet without having to cut through to the edge. The upper blade has a sharp point for piercing the metal and is fixed to the frame of the shears; the lower blade is raised against the upper by the compound action of a hand-operated handle.

Hand Shears *Tin Snips*

Used to cut sheets of aluminum alloy up to about 0.032-inch thick to roughly the size needed to fabricate a part. Final cutting and trimming is done with other tools.

Compound Shea rs

Also known as aviation shears or Dutchman shears. They have short serrated blades, actuated by a com-pound action from the handles. There are three shapes of blades, one designed to cut to the left, one to cut to the right, and one to make straight cuts. The serrated blades leave a rough edge that must be filed off to prevent stress risers. The handles of these shears are often colorcoded. Shears with red handles cut to the left, green handles cut to the right, and yellow handles cut straight.

Saws *Band* Saw

This contour band saw has a work table adjusted for tilt, and a variable-speed drive that allows the cutting speed of the blade to be adjusted to meet the requirements for the material being cut. It also has a cutter, welder, and grinder that allows the saw to be used for cutting inside a piece of sheet material without cutting through to the edge. Drill or punch a hole in the area to be sawed and remove the blade from the wheels of the saw. Cut the blade in two and place one end through the hole in the material. Clamp the two ends of the blade in the butt welder. Electric

Cuts left-redhandle

Cuts straight-vellow handle

current flows through them, and heats them enough to melt the ends so they flow together. Shut the current off and allow the joint to cool, then grind it smooth. Reinstall the blade over the wheels, and cut the inside of the material.

Hack sa w

A hacksaw uses a narrow replaceable blade held under tension in a steel frame. The blades are available in 10 and 12-inch lengths and from 14 to 32 teeth per inch. A blade should be chosen that will allow at least two teeth to be on the material at all times. When cutting, pressure should be applied on the forward stroke and relaxed on the return stroke.

Wood Sa ws Crosscut *Saw*

A crosscut saw is a handsaw used for cutting across the grain of wood. The teeth, or points, are filed so they have a knife-like cutting edge on the same side of each alternate tooth. The teeth are set by bending every other tooth to one side and the alternate teeth to the opposite side. The set of the teeth results in a cut that is wider than the saw blade. This widened cut, called the kerl, keeps the blade from binding in the cut.

Ripsaw

Ripsaws are similar to crosscut saws except for the shape and number of the teeth. They have fewer teeth per inch than a crosscut saw and the teeth are shaped to act as chisels and dig into the wood fibers.

Compass, or Keyhole Saw

A compass, or keyhole saw is a small saw with teeth similar to those of a crosscut saw. The blade is thin and tapered so it can enter a drilled hole and cut curves or circles.

Backsa w

Backsaws have teeth similar to crosscut saws, but much smaller with more teeth perinchand less set. The blade has a stiffener across its back to keep it from bending. Backsaws produce a smooth cut across the grain for wood stringers or capstrips and they are often used with a miter box.

Chisels *Flat Chisel*

Made of a piece of hardened steel that is ground with a cutting angle of 70°. The cutting edge is ground to a convex shape to concentrate the

point the cut is being made.

Gates Ghisel nmer blows at the Cape chisels have a narrow cutting edge used to remove the head of a solid rivet after the head has been drilled through.

Diamond Paint Chisel

These are forged to a sharpcornered square, and the end is ground to an acute angle to form a sharp pointed cutting edge. They are used for cutting V-shaped grooves, and for cutting the sharp corners in square or rectangular grooves.

RoundNose Chisel

These chisels look much like diamond-point chisels except the cutting edge is ground to a circular point. They are used for cutting radii in the bottom of grooves.

Files

Flatfile:Rectangular cross-section, tapered toward point in both width and thickness.

Handfile: Rectangular cross-section, sidesparallel, tapers in thickness. One edge is safe(there are no teeth cut on it). Used for finishing flat surfaces. Half-roundfile: Flat side and rounded side. Tapers in both width and thickness. Used to file the inside of large radius curves.

Triangular, or three-square file:double-cut with triangular cross-section, tapered. Used to file acute internal angles and to restore damaged threads.

Round file: Commonly called a rattail file. Circular cross-section, tapered in length. Used to file the inside of circular openings and curved surfaces.

Knife file: Tapered in both width and thickness, cross-sectional shape much like a knife blade. Used for filing work with acute angles.

Vixen file: Curved teeth across file; used for removing large amounts of soft metal.

Wood rasp: Resembles file, except teeth formed In rows of individual roundpoint chisels. Used to remove large amounts of wood; they do not leave a smooth surface.

Vixen file

Double-cut file

Single-cut file

7.6 Hole Cutting Tools

Twist Drllls

Twist drills are available in two materials, carbon steel and highspeedsteel. Carbon drills cost less and have a shorter life than highspeeddrills and therefore they have limited use. High-speeddrills are made of alloy steel and maintain their sharpness even when they are hot. They are available in three groups of sizes: number, letter, and fraction.

Twist Drill Sizes

Number or Letter	Fraction	Decimal Equivalent
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57	1/64	0.0135 0.0145 0.0160 0.0156 0.0180 0.0200 0.0210 0.0225 0.0240 0.0250 0.0260 0.0280 0.0290 0.0310 0.0313 0.0320 0.0330 0.0350 0.0360 0.0370 0.0380 0.0390 0.0400 0.0410 0.0420
51		0.0430

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	nt
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
48 0.0760 5/64 0.0781 47 0.0785 46 0.0810 45 0.0820	
47 0.0785 46 0.0810 45 0.0820	
44 0.0860	
43 42 3/32 0.0890 0.0935	
41 0.0960 40 0.0980 39 0.0995 38 0.1015 37 0.1040 36 0.1065	
7/64 0.1094 35 0.1100 34 0.1110 33 0.1130 32 0.1160 31 0.1200	
1/8 0.1250 30 0.1285 29 0.1360 28 0.1405	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
23 0.1540 5/32 0.1562	
22 0.1570 21 0.1590 20 0.1610 19 0.1695 18 0.1695	

Number or Letter	Fraction	Decimal Equivalent
Number or Letter 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	Fraction 3/16 13/64 7/32	Decimal Equivalent 0.1730 0.1 TTO 0.1800 0.1820 0.1850 0.1875 0.1890 0.1910 0.1935 0.1960 0.1990 0.2010 0.2031 0.2040 0.2055 0.2090 0.2130 0.2187 0.2210 0.2280
A B C	15/64	0.2240 0.2340 0.2344 0.2380 0.2420
D E F G	1/4	0.2460 0.2500 0.2570 0.2610
H I J K	17/64	0.2656 0.2660 0.2720 0.2 TTO 0.2810
L M	9/32	0.2812 0.2900 0.2950
N O	5/16	0.2969 0.3020 0.3125 0.3160
p a R	21/64	0.3230 0.3281 0.3320 0.3390
S T	11/32	0.3438 0.3480 0.3580
	23/64	0.3594

Ι

Number or Letter	Fraction	Decimal Equivalent
u	2/9	0.3680
V	5/8	0.3770
W	0.5154	0.3860
Х	25/64	0.3906 0.3970
У		0.4040
7	13/32	0.4062
2	27/64	0.4219
	7/16	0.4375
	29/64	0.4331
	31/64	0.4844
	1/2	0.5000

Drill Gage

To identify the size of the drill, find the hole that exactly fits the drill; the number beside the hole is the size of the drill.

	E GAGE F CREW TAPS	AL EQUIVALENTS 0 8 0 6 0 0 140 136 040 0 0 0 0	0.041 6 0.041 6 0.041 6 0.041 6 0.042 8 0.042 8 0.040 8 000 8 0000 8 0000 8 0000 8 000000000	57 5 32 0 25 64 0 25 64 0 25 64 0	152 P. 173 0469	5 54 35 35 22 O	53 650 901 651	52 c90;1401 0 191	51_50 38_01 19_90 19_90 18_0	49 640 880 641	48 947 042 0 41 960 42 0 16 15 0	46 180, 680, 14 O	0 10 10 10 10 10 10 10 10 10 10 10 10 10
550	WIRE HART		Os Sigo	213	4 C	500 500	505)쳤 (7 8 Dã O	90	10 00	11 〇월	12
	CHII &		44 39	33	88	1/8	1/8	28.	19	==	7/32' 7/32	00	1/4
	IND AMP	S DRILL	50	45 45	64	38 38	37	88	29	25	16	10	50
	FOI	TAP SIZE 2-56	2-64 3-48	3 - 56	4 - 40	5 - 40	5 - 44	6 - 40	8 - 32 8 - 36	10 - 24 10 - 32	12 - 24 12 - 28	14 - 20	1/4 - 20

Twist Drill Sharpening

Twist drills are perhaps the simplest cutting tool used by an AMTbut it is important that they be properly sharpened for the material they are used on. The point angles shown here are for aluminum alloys and brass. hard and tough metals, and transparent plastics and wood. When sharpening a drill, be sure that the lengths of the lips, or cutting edges, are the same, and the included angle and lip relief angle are correct for the material to be drilled.

Included angle 11s•

General purpose point for aluminum alloys, brass, and laminated plastics. The chisel angle should be between 125° and 135° .

Point ground for hard and tough metals. The chise langle should be between 115° and $125^\circ.$

Point ground for transparent plastics and wood. The chisel angle should be between 125° and $135^\circ.$

Material	Included angle	Lip relief angle
Aluminum, mildsteel,brass	11a·	10 1s-
Hard and tough materials	135°	50_90
Plastics, wood	90•	12°-15°

Drill Point Gage

Because the points of most drills used in routine aviation maintenance are ground to an included angle of 118°, or 59° either side of center, a handy drill point gage is available to determine that the angle is proper and the lips are of the same lengths.

WARNING: It is important when cutting holes in thin sheet metal to support the metal on a piece of scrap plywood and clamp the metal and plywood firmly to the drill press table. This prevents the metal from becoming a lethal spinning knife if the cutter should dig Into It.

Large Hole Cutters Hole Saws

Used to cut large-diameterholes in thin sheet metal or wood. Different diameter saws can be installed, available from 9/19-inch up to more than 4 inches. A shank fits into a drill press or a handdrill motor, and the pilot drill has a short section of flutes with a longer smooth shank. This allows the drill to cut the pilot hole, then when the saw reaches the material, the shank of the pilot drill is in the hole and therefore does not enlarge the hole, yet holds the saw centered.

Fly Cutter

Used to cut large holes in thin sheet metal, but not limited to specific size holes. A cutting tool is mounted in the arm of the fly cutter, and the arm is adjusted so the tip of the cutter is exactly the radius of the desired hole from the center of the pilot drill. The shank of the fly cutter is chucked in a drill press, and the pilot drill cuts the guide hole.

Operate the drill press at a slow speed, and feed the cutter into the work very slowly and carefully so it cuts rather than grabs.

Countersink

A stopcountersink cutsa countersink to the correct depth. Place the proper cutter in the tool and adjust the fiber collar so it contacts the skin when the countersink hole is the correct depth. To determine the correct adjustment of the skirt, make some test countersinks in scrap material until the recess is just deep enough so the top of the fastener is flush with the metal surface.

Re amer s

A special cutting tool with sharp knife-edge blades, or flutes, cut into its periphery that are extremely hard and easily chipped. When preparing a hole for a close-tolerancebolt, drill the hole about one to three thousandths of an inch (0.001 to 0.003 inch) smaller than the outside diameter of the reamer. Be sure that the reamer is perfectly aligned with the hole and turn it steadily in its proper cutting direction to prevent it from chattering. Never turn the reamer backward after it has begun to cut as this will dull the reamer. Fixed-diameter reamers enlarge the hole to the most accurate dimensions, but expansion reamers may be used to ream a hole slightly larger than a fixed reamer. The hex on the end of the cutter is turned to increase the diameter of the cutters which can be measured with a vernier micrometer caliper.

Drills for Wood and **Composite Materials** Auger Bits

Auger bits are turned with a bowtype brace. The feed screw in the end of the bit screws into the wood and pulls the bit in. Sharp cutting edges parallel with the axis of the bit cut a circle in the wood and the cutting edge perpendicular to the axis of the bit cuts the chips from within the circle. The chips travel up the spiral flutes and out of the hole.

Fixed-diameter reamers

Expansion reamer

Forstner Bits

Mounted in a drill press and used for boring flat-bottomholes in wood. The vertical cutting edge cutsa circle the size of the hole being bored and the horizontal edge cuts the chips from the area within the circle.

Flat Wood-Boring Sits

Available in sizes from 1/4-inchto more than one inch. These bits are chucked into an electric or pneumatic drill motor. The pointed pilot keeps the bit centered in the hole as the cutting edge of the bit cuts the chips and moves them out of the hole.

Brad-Point Drllls

Brad-point drills are used for cutting Kevlar reinforced material. The drill is chucked into a high-speed electric or pneumatic drill motor and pressed into the material with little pressure. The cutting edges cut the fibers and produce a fuzz-free hole.

Spade Drill

Used to drill graphite materials, these provide ample space for the graphite dust to leave so it will not enlarge the hole. Spade drills are turned at a high speed in an electric or pneumatic drill motor, using very little pressure.

Side view

U

End view

7.7 7 Threads and Threading Tools

Unified and American Standard Thread Form

There are a number of forms of threads usedon bolts and screws, but the Unified and American Standard Thread form has been accepted as the standard for most aircraft hardware. This thread form is available in both fine (UNF} and coarse (UNG) threads.

	Threads/Inch			
Screwsize	UNF	UNC		
#0 #2 #4 #6 #8 #10	80 64 48 40 36 32	56 40 32 32 24		
#12	28	24		
Bolt size				
3/16 1 <i>A</i>	32 28	24		
5/16	24	10		
3/8 7/16 1/2 9/16 5/8	24 20 20 18	18 16 14 13 12 11		

Thread-Cutt ing Tools

Cut threads are formed with a die as shown at right. The adjusting screw is screwed in to spread the split in the die in order to shallow the threads being cut. The die is put in the die stock, and the four set screws are tightened to hold the die in place. The die is then placed over the end of the rod to be threaded and turned to cut the threads. The depth of the threads can be increased by screwing out on the adjusting screw.

Miusoe

Taper tap

Taps

Threads are cut inside a hole using a series of taps. A taper tap is used to start the threads as the first several threads are ground back so the tap will enter the hole and easily begin to cut the threads. For thick material, a plug tap is used to follow the taper tap. If the threads are to extend all the way to the bottom of a blind hole, a bottoming tap is used to follow the plug tap. The threads on a bottoming tap are full depth all the way to the end. Taps are held in a tap wrench which is turned with both hands to ensure that the tap is perpendicular to the material as threads are cut.

ForUNF threads						
Size and threads	Body diameter	Body drill	Preferred holediameter	Tap drill		
0-80	0.060	52	0.0472	3/64		
1-72	0.073	47	0.0501	53		
2.64	0.050	40	0.0591	50		
2-04	0.056	42	0.7000	46		
3-56	() ()99	37/	0.0810	42		
4-48	0.112	31	0.0911	38		
5.44	0 125	29	0.1024	33		
6-40	0.138	27		29		
			0.1130	21		
8-36	_0 154	18	0.1360	15		
10-32	0.190	10	0.1590	3 1		
12-28	0.216	2	0.1800	a		
1/4 29	0.250	E.	0.1800	Ŵ		
5/16 24	0.230	5/16	0.2130	7/16		
3/8-24	0.3125	3/8	0.3320	1/2		
7/16-20	0.375	7/16	0.3860	9116		
112-20	0.500	1/2	0.4490	11/16		
9/16-18	0.5625	9/16	0.5060	51/64		
5/8-18	0.625	5/8	0.5680	59/64		
3/4-16	0.750	3/4	0-6688			
7/8-14	0.875	7/8	0.7822			
1"-14	1.000	1"	0-9072			

Body and Tap Drill Sizes

160 Aviation Mechanic Handbook

For UNC threa	For UNC threads						
Size and threads	Body diameter	Body drill	Preferred holediameter	Tap drill			
1-64 2-56 3-48 4-40 5-40 6-32 8-32 10-24 1/2-24 1/4-20 5/16-18 3/8-16 7/16-14 1/2-13 9/16-12 518-11 3/4-10 7/6-9 1"-8	0.073 0.086 0.099 0.122 0.125 0.138 0.164 0.250 0.3125 0.3125 0.375 0.4375 0.4375 0.500 0.5625 0.625 0.625 0.750 0.875 1.000	47 42 37 31 29 27 18 10 2 1/4 5/16 3/8 7/16 1/2 9/16 5/8 3/4 7/8 1"	0.0575 0.0682 0.078 0.0866 0.0995 0.1063 0.1324 0.1476 0.1732 0.1990 0.2559 0.3110 0.3642 0.4219 0.4219 0.4TT6 0.5315 0.6480 0.7307 0.8376	53 51 5164 44 39 36 29 26 17 8 F 5116 U 27/64 31/64 41/64 49/64 7/8			

For NationalTaper Pipe Serles				
Nominal pipe size (Inch)	Threads per inch	Root diameter of pipe	Tap drill	
1/8 1/4 3/8 1/2 3/4	27 18 18 14 14	0.3339 0.4329 0.5676 0.7013 0.9105	a 7/16 9/16 45/64 29/32	

For metric threads					
Metric threads	Metric tap drill				
$\begin{array}{c} M2.5 \ x0.45 \\ M3x \ 0.5 \\ M3.5 \ x \ 0.6 \\ M4 \ x \ 0.7 \\ M5x \ 0.8 \\ M6.3 \ x \ 1 \\ MBx \ 1.25 \\ M10x \ 1.5 \\ M12x \ 1.75 \\ M14 \ x \ 2 \\ M16 \ x \ 2 \\ M20 \ x \ 2.5 \\ M24x \ 3 \end{array}$	2.05 2.5 2.9 3.3 4.2 5.3 6.8 8.5 10.2 12.0 14.0 17.5 21.0				

Screw Pitch Gage

Screw pitch gages help to identify the thread type and size on a bolt or nut. Each leaf in the gage has teeth that correspond to bolt or nut threads, with the number of threads per inch stamped on it. To find the number of threads per inch on a bolt or nut, select the leaf with an exact fit to the threads and note the number stamped on the leaf.

7.8 Torque and TorqueWrenches

NOTE: The strongest threaded joint is one in which the load applied to the fastener when it is installed is greater than the maximum load that will be applied to the joint in service. If a threaded fastener does not fail when it is being properly torqued, it will not fail in service.

Cliek-Type Torque Wrench

Twist the handle until a reference mark aligns with a graduation on the shaft of the wrench indicates the desired torque. Place the correct socket on the wrench and put it on the fastener to be torqued. With the wrench perfectly square to the fastener, apply a smooth pull on the wrench until it clicks. Click-type torque wrenches do not limit the amount of torque that can be applied; rather, they indicate the set amount of torque being applied when they click. Stop the pullas soon as the wrench clicks.

L = Lever length (inches)

0

T_W

Deflecting-Beam Torque Wrench

It is important that the socket is square on the fitting and the force applied to the wrench is concentrated at the pivot point on the handle. The torque readon the wrench (Tw) measured in inchpounds is the product of the lever length (L) in inches and the force (F) in pounds. When using an adapter on a torque wrench that adds to the lever length, you must use the formula below to determine the torque reading on the wrench Tw in order to attain the required amount of torque applied to the fastener by the adapter TA.

- L = Lever length of torque wrench
- E = Arm of the adapter

When the extension subtracts from the lever length of the wrench, use this formula.

Tw = Torque indicated on the wrenchTA= Torque applied at the adapter L = Lever length of torque wrench

E = Arm of the adapter

Torque Conversions

Inch	Inch	Inch	Foot	Centimeter	Meter
grams	ounces	pounds	pounds	kilograms	kilograms
7.09 14.17 21.26 28.35 113.40 226.80 453.59	$\begin{array}{c} 0.25 \\ 0.5 \\ 0.75 \\ 1.0 \\ 4.0 \\ 8.0 \\ 16.0 \\ 96.0 \\ 192.0 \\ 384.0 \\ 576.0 \\ 768.0 \\ 960.0 \end{array}$	$\begin{array}{c} 0.25\\ 0.50\\ 1.00\\ 6.00\\ 12.00\\ 24.00\\ 36.00\\ 48.00\\ 60.00\\ 72.00\\ 84.00\\ 96.00\\ 108.00\\ 120.00\\ \end{array}$	$\begin{array}{c} 0.08\\ 0.50\\ 1.00\\ 2.00\\ 3.00\\ 4.00\\ 5.00\\ 6.00\\ 7.00\\ 8.00\\ 9.00\\ 10.00\\ \end{array}$	1.11 6.92 13.83 27.66 41.49 55.32 69.15 82.98 96.81 110.64 124.47 138.31	$\begin{array}{c} 0.138\\ 0.277\\ 0.415\\ 0.553\\ 0.692\\ 0.830\\ 0.968\\ 1.106\\ 1.245\\ 1.383\end{array}$

Recommended Torque Values

Recommended TorqueValues for Fine-Thread-Serles Steel Fasteners								
	Standard AN and MS steel boltsIn tension			High strength MSand NAS steelbolts In tension				
Nut-Bolt size	Nuts tension torquelimIts (InIbs.) Min. Max.		Nut shear torque limits (InIbs.) Min. Max.		Nuts tension torque llmlts (InIbs.) Min. Max.		Nut shear torque limits (InIbs.) Min. Max.	
8-36 10-32 1/4-28 5/16-24 3/8-24 7/16-20 9/16-18 5/8-18 3/4-16 7/8-14 1-14 1-1/8-12 1-114-12	$\begin{array}{c} 12\\ 20\\ 50\\ 100\\ 160\\ 450\\ 480\\ 800\\ 1\\ 1,100\\ 2,500\\ 2,500\\ 3,700\\ 2\\ 5,000\\ 7\\ 9,000\\ 11\end{array}$	15 25 70 140 190 500 690 1,000 1,300 2,500 3,000 4,500 7,000	7 12 30 60 95 270 290 480 660 1,300 1,500 2,200 3,000 5,400	9 .15 40 85 110 300 410 600 1, gg. 1,800 3,300 4,200 6,600	$\begin{array}{c} 25\\80\\120\\200\\520\\770\\.1,100\\2,650\\3,550\\4,500\\6,000\\11,000\end{array}$	30 100 145 250 630 950 1,300 1,500 3,200 4,350 5,500 7,300 13,400	$ \begin{array}{r} 15\\50\\70\\120\\450\\650\\750\\1,600\\2,100\\2,700\\3,600\\6,600\end{array} $	20 60 90 150 400 550 800 950 2,600 3,300 4,400 8,000

Recommended Torque Values for Coarse-Threacerles Steel Fasteners						
	Standard AN and MS steel boltsIn tension					
Nut-Bolt size	Nuts tensio Min.	on torque llmlta (InIba.) Max.	Nuts shear torque limits (InIbs.) Min. Max.			
8-32 10-24 1/4-20 5/16-18 5/8-16 7/16-14 1/2-13 9/16-12 5/8-11 3/4-10 7/8-9 1-8 1-1/8-8 1-1/4-8	12 20 40 80 160 235 400 500 700 1,150 2,200 3,700 5,500 6,500	$ \begin{array}{c} 15\\25\\50\\90\\185\\255\\480\\700\\900\\1,600\\3,000\\5,000\\6,500\\8,000\end{array} $	$\begin{array}{c} 7 \\ 12 \\ 25 \\ 48 \\ 95 \\ 140 \\ 240 \\ 300 \\ 420 \\ 700 \\ 1,300 \\ 2,200 \\ 3,300 \\ 4,000 \end{array}$	$\begin{array}{c} 9\\ 15\\ 30\\ 55\\ 110\\ 155\\ 290\\ 420\\ 540\\ 950\\ 1,800\\ 3,000\\ 4,000\\ 5,000\\ \end{array}$		

Recommended Torque Values for Fine-Thread-Serles Aluminum Alloy Fasteners						
	Aluminum bolts In tension					
Nut-Bolt size	Nuts tensi Min.	on torque limits (InIbs.) Max.	Nutsshear torque limits (tnIbs.) Min. Max.			
8-36 10-32 1/4-28 5/16-24 3/8-24 7/16-20 1/2-20	5 10 30 40 75 180 280	10 15 45 65 110 280 410	3 5 15 25 45 110 160	6 10 30 40 70 170 260		

7.9 Pounding Tools

Carp enter 's Claw Hammer

This hammer is used for driving and removing nails, but is seldom used when working on an aircraft. It is not designed for use in metal working because its face is slightly crowned to concentrate the force when driving nails.

Ball Peen Hammer

This is the most widely used hammer for general aviation maintenance; available with head weights from a few ounces to several pounds. The face of the hammer is flat with slightly rounded edges, and the opposite end of the head is rounded like a ball.

Metalworking Hammers Straight Peenand Cross Peen Hammers

These are similar to the ball peen except the peen end is in the form of a wedge. The wedge on a straight peen hammer is parallel to the handle; the wedge on a cross peen hammer is across the handle.

Body, or Planishing Hammer

To form compound curves in sheet aluminum, the metal may be stretched by hammering it into a sandbag, then smoothed out by hammering it over a smooth steel dolly block with a planishing, or body hammer, a lightweight hammer with a large-area smooth face.

Mall ets and Soft-Face Hammers

Sheet aluminum is formed by first stretching it, then smoothing it so the stretched metal forms the desired curves. The initial stretching is done by pounding the metal into a

sandbag or around a form with a soft-face hammer, or mallet. These hammers may have replaceable faces of soft metal, resilient plastic, or coils of rawhide. Some hammer faces are domed to better stretch the metal; some are flat for the initial smoothing.

Sledge Hammers

Sledge hammers are long-handled, heavy-head hammers that have two parallel flat faces. They are wielded with two hands and used for heavy pounding work, or for driving stakes in the ground.

7.10 Punches

Prick Punch

Has a sharp point: used to mark the exact location for drilling a hole in a piece of sheet metal. The point of

the prick punch is placed at this location, and the punch is tapped with a lightweight hammer, leaving a small indentation at the location for the hole.

Cent er Punch

Similar to a prick punch, but its point is more blunt. It is around to an angle of approximately 60°, which is

correct for starting a properly ground twist drill to cut. The point is placed in the indentation formed by the prick punch, and the punch is hit with a hammer to create a depression for holding the drill as it begins to cut.

Drift, or Starting Punch

Has a tapered shank; used to drive bolts from their holes and to align parts for assembly. Especially

useful when installing wings or other large airplane components. The wing is put in place, and a drift punch is used to align the holes in the wing spars and the fuselage before the bolts are put in place.

Pin Punch

Used to remove rivets after the

manufactured head has been drilled t = tthrough. A punch of the proper size is placed in the drilled hole, and the

rivet head is broken off. The punch is then tapped with a lightweight hammer to punch the rivet shank from the hole. Also used to align components being assembled.

Transfer Punch

Used to locate rivet holes when making a new aircraft skin using the

old skin as a pattern. A transfer punch whose outside diameter is the same as the diameter of

the rivet hole is placed in the hole in the old skin. The punch is tapped with a lightweight hammer and the sharp point in the center of the flat endmakes a small indentation; this transfers a location for a center punch to the new skin.

Automatic Center Punch

Used when a large number of holes must be marked. A springinside the handle is adjusted by twisting the handle. Place the point in the

indentation made by a prick punch and press the punch into the metal. As you press, the spring is compressed, and when the proper compression is reached, the spring automatically releases and drives the point into the metal.

7.11 Wre nches

Open End Wrench

Open end wrenches have parallel jaws on each end. These jaws are angled 15° to the axis of the wrench to allow the wrench to be flipped over to get a new grip on the fastener when turning it in a confined space. Most have differentsized openings on the ends.

D C

U.S. wrench sizes (Inches)	Metric wrench sizes(mm)
$\begin{array}{c} 1/4 - 5 - 16 \\ 3/8 - 7/16 \\ 1/2 - 9/16 \\ 5/8 - 3/4 \\ 11/16 - 13/16 \\ 3/4 - 7/8 \\ 25/32 - 13/16 \\ 15/16 - 1 \\ 1 - 1/16 - 1 - 1/8 \\ 1 - 1/4 - 1 - 5/16 \end{array}$	6 - 8 7 - 9 10 - 11 12 - 14 13 · 15 16 - 18 17 · 19 20 · 22 21 - 23 24 - 26

Adjustable Open End Wrench

Adjustable end wrenches have one fixed jaw and one jaw that slides in a groove and moves by a worm gear that is rotated by the user. Important: Place the wrench on the fastener so the pull is away from the fixed jaw. When the wrench is held in this way, the strain is placed on the tip of the fixed jaw and at the base of the movable jaw where it is the strongest.

Ratcheting Open End Wrench

A ratcheting open end wrench allows a fastener to be turned down or removed without having to lift the wrench at each turn. It looks like an ordinary open end wrench except one of the jaws is much shorter than the other. When you pull thewrench toward you the pressure is applied near the end of

the long jaw and the root of the short jaw. When the direction of wrench movement is reversed the short jaw moves around to the next flat.

Box End Wrench

Much more torque can be applied with a box end wrench than with an open end, as they cannot be sprung open. Available in both 6-point and 12-point ends, with gripping surfaces offset so the wrench can be flipped over to get a new grip on the

fastener while working in close quarters. The handles of some box end wrenches are offset so they extend upward, for clearance, when the box of the wrench is flat.

Ratcheting BoxWrench

These have two thin 6- or 12-point open sockets mounted in the ends, in the same way as the box ends of a standard box end wrench. The

outside of the sockets have ratchet teeth cut in them, and the ratchet pawls are inside the wrench handle- to get a new grip on the fastener, just ratchet the handle for a new grip each time the pawl slips over a ratchet tooth. To reverse the wrench, remove it and flip it over. Made with both straight and offset handles.

Combination Wrench

This wrench has a box end and an open end of the same size handy for removing tight fasteners. The box end is used to apply maximum torque for breaking the fastener loose, then the open end is used as it is much quicker to get a new grip with an open end than with a box end.

Flare Nut Wrench

Flare nut wrenches resemble a straight box end wrench that has a portion of the box removed so the

wrench will slip over the fluid line to

loosen or tighten the fitting. These are weaker than box end wrenches and should not be used in place of a box end wrench for general nut tightening or loosening.

Socket Wrenches Socket Wrench Handles

The ratchet-type allows a socket to be placed on a fastener, and by moving the handle back and forth, it is possible to tighten or loosen the fastener without removing the socket. The break-over handle, or breaker bar, is a long handle with the socket drive mounted on a pin that allows its angle relative to the handle to be varied. Break-over handles can apply the maximum torque to a fastener to tighten or loosen it. Speed handles, or speeders, resemble a crank that allows a fastener to be rapidly spun into place. Very little torque can be applied with a speed handle.

Ratchet handle

Speed handle

Breakover handle

Hand Impact Tool

Used to break loose nuts and screws that have been corroded or rusted to the extent that an ordinary socket or screwdriver cannot budge them. Especially useful when fitted with a screwdriver bit to loosen structural screws in stressed inspection plates. The recess in the screw is cleaned out, and the screwdriver bit is installed on the driver and placed in the recess. The end of the driver is struck with a ball peen hammer; the blow rotates the screwdriver bit and at the same time prevents it from jumping out of the recess.

.

Typical Socket Wrenches

Available in 6- and 12-point openings, and in U.S. and metric sizes. Varieties are shallow sockets, semi-deep sockets, and deep sockets. Sockets with universal joints are available, as well as universal joints that can be placed between a normal socket and a drive. Crowfoot wrenches with an open end or a flare-nut end can be mounted on an extension to reach fasteners that cannot be reached by any other type of wrench.

Extension and Adapters

Straight extensions are available from less than 2 inches long to more than 36 inches. Some extensions are made of double-wrapped steel wire and are flexible so the socket can be oriented at any angle relative to the drive handle. Universal joints allow any socket to be used as a universal socket. Ratchet adapters can be installed between a handle and a socket, or an extension and a socket, so the socket can be ratcheted.

Straight extension

Universal joint

Alle n Wre nche s

Allen wrenches are made of hardened tool steel with a hexagonal cross section, in the shape of the letter L with a long and a short leg. They normally come in sets and have dimensions across their flats of from 1/16 inch to 5/8 inch.

7.12 Screwdrivers

Slot Screwdrivers

Slot-headscrews have limited use in aircraft because they cannot be installed or removed with power screwdrivers-the blade slips out of the screw slot and can damage the component. Mostly they have been

replaced with recessed-head screws. The blade of a slot screwdriver must be property sharpened to prevent damage to the screw or the component in which the screw is installed. The sides of the tip should be ground parallel with the shank, and the edges should be sharp to grip the screw at the bottom of the slot.

Offset Screwdriver

Used to tum screws in locations that a straight screwdriver cannot reach.

Recessed-Head Screwdrivers

Power screwdrivers require a screw headthat will notallow the bit to slip out. Twotypes of recessed-head, or cross point screws have been used in aviation maintenance for decades: the Phillips and the Reed & Prince. The point of the Phillips screwdriver 1s blunt, and the sides of the point have a double taper. The Reed & Prince has a sharp point and a single taper.

Sc re w H ead s for Spec ial Structural Screws

Theairlines and the military use screws with other types of recessed heads that hold the point of the screwdriver bit more tightly to prevent its slipping out when used with a power screwdriver. Screwdriver bits are made to fit all of these special screws. The Pozidriv screwdriver tips are an improvement on the Phillips because the tip is not as tapered, with wedges that ensure a tight fit in the screw head. Phillips screwdriver bits should not be used on Pozidriv screws as they will ride up out of the recess and round the corners of both the screw head and the screwdriver bit.

Section 8: Aircraft Hardware

- 8.1 Standards Page 177
- 8.2 Threaded Fasteners Page 177
- 8.3 Washers Page 193
- 8.4 Special Rivets Page 195
- 8.5 Cowling Fasteners Page202
- 8.6 Thread Repair Hardware Page203

8.1 Standards

In the past, most manufacturers usedstandard aircraft parts that had been engineered and approved by the Army and Navy, with their specifications issued as \mathbf{AN} standards . \mathbf{AN} standard parts were easy to identify and their numbering system was relatively simple. But with the introduction of the turbine engine and high-speed, high-performance aircraft, aircraft hardware has become a much more complex and critical field. \mathbf{AN} standards were replaced by **Air** Force -Navy standards; then other standards were developed- some of the more important standards are listed below:

AN-Air Force/ Navy Standards NAS- National Aerospace Standards MS-Military Standards AMS- Aeronautical Material Specifications SAE- Society of Automotive Engineers MIL- Military Specifications

The task of looking at markings on a part and measuring it to determine part number is now a thing of the past. Many parts look alike, but their materials or tolerances can be quite different. **Any replacement hardware must be the part number specified In the aircraft or engine parts manual, and each piece of hardware must be purchased from a source known to be reputable.** Look-alike parts that might be of inferior strength can jeopardize the safety of an aircraft. The most commonly used parts and pertinent facts about their proper use are listed in this Section. AMTs should become familiar with the parts manuals for the aircraft and engines he or she is working on to find the correct part number for each piece of hardware used.

8.2 Threaded Fasteners

Bolts

Themost common type of threaded fastener, available in a number of materials such as nickel steel, aluminum alloy, corrosion-resistant steel, and titanium. Different types of heads for special purposes and different thread pitches adapt them to special functions.

He x-Hea d Bolts

Thestandard bolt used in airframe and powerplant construction, designed for both tensile and shear loads. They depend on the proper application of torque for the strength

<u>0</u> <u>f</u> - <u>-</u>-

of the joint. Available with both UNC and UNF threads, made of SAE 2330 nickel steel, 2024 aluminumalloy, corrosion resistant steel, and titanium. Most have a medium (class 3) fit and most of the steel bolts are cadmium-plated. Also available with holes drilled through the head for safety wire, and/or with a hole through the shank for a cotter pin. The material or bolt type is identified by marks on the head. Close-tolerance bolts, identified by a triangle, are ground to a fit of ± 0.0005 inch and the ground surface is not plated, but is protected from rust with grease.

- A AN3 -AN20 Standard alloy · steel hex-head aircraft bolt
- B AN3DD-AN20DD- Standard aluminum alloy hex-head aircraft bolt
- C AN3C-AN20C- Standardcorrosion resistant steel hex-head aircraft bolt
- D AN73-AN81- Drilled-headaircraft bolt
- E AN173-AN182 Close-tolerancebolt
- F AN101001AN103600 Alloysteel hex-head aircraft bolt
- G AN103701-AN104600 Drilledheadaircraft bolt
- H AN104601AN105500 Corrosionresistant steel drilled-head aircraft bolt

AN107301-AN10820-0 Corrosionresistant steel drilled-head aircraft bolt

- J NAS464- Close-tolerancebolt
- K NAS501 Corrosion resistant steel hex-head aircraft bolt
- L NAS1103-NAS1112- Alloy steel hex-head aircraft bolt

Flush-Head Bolts

Many modern aircraft applications require high-strength bolts with heads that can be flush with the outside skin of the aircraft. Most bolts in the NAS and MS series have a

100° head, but some have an 82° head. These high-strength bolts are made of alloy steel and titanium and some have self-lockinginserts in the threads.

Drilled-Head Bolts

Drilled-head airframe bolts are used in locations where a high tensile strength is required and where the bolt is safetied with safety wire. There is no hole in the shank for a cotterpin.

Twelve-Point, Washer-Head Bolts

Designed for special high-strengthand high-temperature airframe and powerplant applications; available in both NAS and MS series. The heads of many of these bolts are drilled for safety wire.

Int e rnal Wrenching Bolts

These are the typical high-strength alloy steel bolts used in special airframe applications where severe loads are imposed on the structure. They have a radius between the shank and the head,

and a special chamfered, heat-treated steel washer (such as the NAS 143C) is used under the head to provide a bearing surface. Turned with a hex wrench which fits into the socket in the head.

1--- 111-B

Aviation Mechanic Handbook

180

Cle vis Bolts

Designed for shear loads only. To prevent them from being used for tensile loads, the head is shallow and has a slot or recess for turning with a screwdriver. The threads are short to take a thin nut, and there is a notch

between the threads and the shank. Most have a drilled shank so a cotter pin can be used to prevent the nut from backing off. A typical application is the attachment of a cable to a control horn: the bolt is installed and the nut is tightened just enough that the cable terminal is free to move on the horn.

Eye Bolts

Used to attach wires and cables to aircraft structure; made of alloy steel, cadmiumplated, and available with or without drilled shanks.

Bolt Installation

Almost all hex-head bolts have a round, smooth, washer-like bearing surface just below the head. This surface prevents the edges of the head from damaging the surface of the component into which the bolt is installed. If there is no such surface, a washer should be placed under the head. Also, always place a washer under the nut

to provide a good bearing surface and prevent damage to the component as the nut is tightened.

The bolt length should be chosen so that the grip length (the length of the unthreaded shank) is the same as the thickness of the materials being joined. The nut must never be screwed down against the last thread on the bolt. If the grip length is too long, use plain washers to act as shims to prevent the nut reaching the last thread. **Bolts must be Installed in exactly the way the aircraft or engine maintenance manual specifies.** If there is no information of this nature, bolts should be installed with the head upward, forward, or inboard. These orientations normally aid in preventing the bolt from falling out if the nut were not screwed on.

Some bolts have holes drilled in the threaded portion of the shank for cotter pins to secure a castellated nut. If a self-locking nut is to be used on a drilled shank bolt, be sure that the edges of the hole are chamfered to prevent the sharp edges from cutting threads in the nut insert.

AN42 to AN49 series

N21 AN36 series

Bolt Fits

If there is any looseness or play in a threaded joint, vibration can produce a cyclic stress that can further loosen the fastener and lead to destruction. Aircraft design engineers calculate the stresses that will affect every joint, and the fasteners are designed to produce a stress within the joint greater than any anticipated applied stress. This bolt stress is determined by the fit of the bolt in the bolt hole, and by the torque applied (*see* Pages 162-165). The maintenance manual usually specifies the drill size for all bolt holes. If no drill size is specified, it is normally satisfactory to use the next larger number drill (smaller number) than the shank diameter of the bolt being installed. Example: a #12 drill (0.1890) can be used for a 3/16-inch (0.1875) bolt. Some manuals specify a type of drive fit for the bolt in which the hole is drilled slightly undersize and reamed to the diameter that will provide the desired fit (seetablebelow):

Type of fit	How to drill/ream hole
Loose fit	Use a drill number one size larger than the diameter of bolt. Hole is 0.002 to 0.005 inch larger than bolt shank.
Push fit	Reamed fit-allows bolt to be forced into the hole by hard, steady push against bolt head.
Tight-drive fit	Requires bolt to be driven into the hole with sharp blows from a 12- or 14-ounce hammer.
Interference fit	Bolt diameter is larger than reamed diameter of hole. The component with the hole must be heated to expand the hole- the bolt is chilled with dry ice to shrink it. When bolt is installed and the component and the bolt reach the same temperature, the bolt cannot be moved.

Scre ws

Normally differ from a bolt because they have a slot or recess in the head so they can be turned with a screwdriver rather than a wrench, and their threads eX1end all of the way to the head. However, this distinction has been blurred: a number of high-strength bolts also exist with flush heads so they can be installed on the outside of an aircraft structure and not cause wind resistance.

Round head

Normally used for nonstructural applications and are made in steel and brass. Most have a class 2 fit; available with both coarse and fine threads. Slot heads and Phillips recessed heads are the most common.

Pan head

Flatter than round heads, used to replace round heads for new designs. Available with slot or Phillips recessed heads.

100° Flush head

Used for applications where high strength and a smooth surface are necessary. Available in both NAS and MS series; may have Phillips, Hi-Torque, or Torq-Set heads.

82° Flush head

Found on some of **AN** screws; used for a flush installation where high strength is not necessary.

Fillister head

Used where surface smoothness is not necessary. Often drilled for safety wire.

Slot

Tri-wing® recess

(Registered trademark of Phillips Screw Company)

Hi-Torque recess

Phillips recess

Torq-Set recess

Set Scre ws

A special type of headless screw used for such applications as securing wheels or pulleys to shafts, or indexing a wheel on a splined shaft. The cup and cone points bite into the shaft for a tight grip. The full dog and half dog points are used to ride in a spline to allow lengthwise movement while preventing rotation.

Self -Ta pping Sheet-Metal Screws

Used in the installation of cowling and inspection plates for some lighter aircraft. Often called PK screws because the first ones to become popular were made by the Parker-Kaylon company. Available in the AN, MS, and NAS series. They may have either a sharp point (Type A) or a blunt end (Type B), and are made with either a slot or a Phillips recessed head in sizes 4, 6, 8, and 10.

Nuts

These components have internal threads that screw down over a bolt to provide the clamping action that holds all the components in a bolted joint tightly together.

Nonlocking Nuts

- No built-in provision for automatically locking them to the bolt.
- Must use a cotter pin, safety wire, or a check nut to prevent them from turning.

AN310 and AN320

- Secured to bolts by cotter pins passed through bolt holes and slots in the nuts.
- AN310-thick nutused for tensile loads
- AN320-thin nutused only for shear loads.
- Available in cadmium-plated nickel steel, aluminum alloy, and corrosion resistant steel.

AN315 and AN316

- AN315- used on a bolt with no cotter pin hole; thick, for tensile loads.
- AN316- check nut used to lock the AN315 to a bolt.
- The AN315 nut is screwed down on the bolt and tightened with the proper torque, then the AN316 nut is screwed down on top of it and tightened.

• Tightening the AN316 applies a tensile stress to the bolt which holds the nuts tightly together, preventing vibration from loosening the joint.

AN355

- Slotted nut; locked onto bolt or stud with a cotter pin or safety wire through the slots and through a bolt or stud hole.
- Designed for use on engines; not approved for use on aircraft structures.
- Being replaced with AN121551 through AN121600 series nuts.

Seff-Locking Nuts

Vibration is an ever-present problem in aircraft operation, and some method must be used to prevent nuts from loosening on bolts or studs. This is often done with cotter pins or safety wire through holes in the bolt or stud and slots in the nuts. Self-locking nuts were devised to save the time needed to safety these nuts. These are classified by the temperature they are designed to withstand. Low-temperature nuts should not be used where temperatures exceed 250°F, but high-temperature nuts are good to temperatures as high as 1.400°F.

Low-temperaturelocking nuts:

- Has a fiber or nylon insert locked into the end of the nut, with a hole slightly smaller than the major diameter of the bolt used.
- 2. Screws down freely until the insert is reached, then a wrench is required to turn it further.
- 3. The bolt does not cut threads in the insert, rather it distorts the insert causing it to grip the bolt threads. This gripping action plus the opposition to turning caused by the insert produces a force between the nut and bolt threads which prevents the nut from loosening.
- Self-locking nuts should not be used in any application where the nut and bolt are subject to rotation (such as in attaching a control cable to a control horn).
- A self-locking nut can be reused as long as a wrench is required to turn it on thebolt.
- 6. To ensure that the insert grips all of the bolt threads, the complete chamfer on the end of the bolt must stick out beyond the insert; if the bolt is not chamfered, at least one complete thread should show beyond the insert.

Slotted Engine Nut

8.2

High-temp era ture locking nuts:

- The fiber or nylon insert cannot tolerate high temperatures, therefore several methods have been devised to lock all-metal nuts to the bolt- two of the most popular methods are distorting the pitch of the threads, and compressing the end of the nut.
- Some nuts, such as the 12-point nut in view A, have a thinned section near the end that is compressed enough to distort the pitch of the threads. As the nut is screwed down on the bolt, it turns easily until the bolt threads encounter the distorted area, then a wrench is needed to turn it further. This type of nut is

widely used in aircraft engine and missile applications and is suitable for applications to temperatures as high as 1,400°F.

• The nut in view B is made of relatively thin steel, with the end of the nut formed into an elliptical shape. As it screws down on the bolt threads the ellipse rounds out, and the spring action of the nut grips the bolt threads.

Not all nuts used in aviation construction are of the hex or 12-point configuration. There are many types of nuts that are fixed to the structure that do not require a wrench for installation with screws or bolts.

Wing Nuts

- 1. For special aircraft applications that require a nut that can be turned without the use of any tools.
- Not normally required to produce a great deal of force, so they do not need much torque for installation.
- 3. Used to secure objects that must be frequently removed.

Anchor Nuts

1. Foruseon inspection plates that

are retained with screws from the outsideof the aircraft, with no access to the nuts on the inside.

- 2. Available in both low- and high-temperature styles.
- 3. Riveted around the screw hole in the aircraft structure so that the inspection plate screws can be screwed into the anchor nut without having to hold the nut with a wrench.

CfLwv Elli

Channel Nuts

- A form of anchor nut used when it is necessary to have a number of nuts inside the aircraft structure for attaching components such as access panels.
- The channel is riveted to the structure, and the nuts ride loosely inside the channel; this looseness allows for slight movement to align the nut with the screw.

- 4. The ESNA (Elastic Stop Nut series) nuts use fiber or nylon inserts to grip the screws and prevent them from loosening.
- 5. On the Boots series nuts, the pitch of the last threads at the nut end is distorted with respect to the nut threads in the body. The difference in the thread pitch grips the screw tightly so they will not loosen.

P ressed-Steel Nuts

- 1. Saves cost and weight in aircraft construction.
- 2. The best example is the Pal nut, a thin nut used primarily on engines as a check nut to prevent a plain nut from loosening.
- 3. The plain nut is tightened to the proper torque, then the Pal nut is installed over it and tightened only snugly.
- 4. The thin steel of the nut rides in the threads of the bolt, and as the nut is tightened it exerts a force on the threads that holds the nut so tight against the plain nut, that normal vibration cannot loosen it.

- 5. The Type U Speed nut is a popular pressed-steel nut for cowling and other applications on light aircraft. It is slipped over a screw hole in the fixed portion of the cowling, and a self-tapping sheet metal screw is passedthrough the mating hole in the removable part. As the screw is tightened, it forces down the edge of the spring steel nut and holds the screw tight so vibration will not loosen it. Prevents the hole in the soft sheet aluminum of the cowling from being enlarged by repeated installation and removal of the screws.
- 6. Anchor nuts are available in pressed-steel- two of the more popular configurations are the plain type and the corner type, both available for round-head and flat-head screws. Anchor nuts for flat-head screws are dimpled so the dimpled hole of the inspection plate will nest in it.

Instrument Nuts

- This nut can be slipped into the mounting holes and will receive the screw and not turn when the nut is tightened.
- For mounting instruments on the front side of the panel, the same type of nut is available with the legs just long enough to go through the panel metal.

Rivnuts

- Developed to atliich rubber deicer boots to the thin metal of aircraft wings and empennage leading edge surfaces.
- 2. Special tubular nuts are screwed onto a mandrel in the puller, and inserted in the hole in the aircraft skin.
- 3. The handles of the puller are squeezed together and the Rivnut tube is collapsed, tightly gripping the skin.
- 4. The mandrel of the puller is screwed out, then the machine screw used to attach the boot can be screwed in.

Many Rivnuts have a key under the head that fits into a notch cut into the edge of the hole in the skin to prevent the Rivnut from turning when the screw is insertedor removed.

Threaded Fastener Safetying

All threaded fasteners with the exception of self-locking nuts are secured with some form of safety device.

Loclcing Wash er s

- Fit over the bolt or stud.
- Tab fits into a hole or slot in the body of the component.
- Plain nut installed and torqued; the triangular-shaped tabs are bent up against the flats of the nut.

• Nut cannot back off of the stud, stud cannot back out of the component.

Cotter Pins

- Castellated nuts are safetied on bolts with cotter pins passed through the castellations and the hole in the shank of the bolt.
- Available as AN380 in low-carbon steel, and AN381 in corrosion-resistant steel.
- Be sure to check the airframe or engine maintenance or parts manual to get the correct part number for the correct pin.

Installation:

- First check the alignment of the slots in the nut with the hole in the bolt at the minimum recommended torque. If they are not aligned, continue to tighten. This normally ensures the hole and slots will align within the allowable torque range. If there is no alignment by the time maximum torque is reached, remove the nut and install a different thickness plain washer under the nut and retorque. It is not recommended that maximum torque be exceeded for alignment.
- 2. When the nut is properly torqued, slip the correct cotter pin through the slots in the nut and the hole in the bolt shank.
- 3. Spread the pin and pull the head tightly into the slot of the nut.
- 4. Fold one of the legs back against the end of the bolt shank and cut it off with a pair of diagonal cutters so it does not extend past the edge of the bolt shank.
- 5. Cut the other leg of the pin so it does not extend beyond the edge of the nut and fold it securely down against the flat of the nut.
- 6. As a final check, be sure that the cotter pin is tight, with no looseness *Or* play, and that the ends of the pin are tight against the bolt and nut (so they cannot cut you if you rub your hand over them).
- 7. If it is important that the cotter pin not protrude beyond the end of the bolt shank, the pin may be inserted with the split vertical and the ends folded back against the flats of the nut. The pin should be tight in the slot and the ends cut off so they leave no sharp edges.

Safety Wire and Safety Wire Twisting

- Safety wire is available in copper, brass, stainless steel, and galvanized or tinned steel.
- Sizes in diameters from 0.020 to 0.051 inch.
- Be sure to use the size and material wire specified by the equipment manufacturer, and safety as specified in the appropriate maintenance manual.
- Safety wire twisting can be done with a pair of duckbill pliers, but one of the reversible safety wire twisting tools makes the job much faster and more uniform.

Some tips for twisting safety wire:	
	 Safety wire should be twisted in a direction that will hold the loop of wire down along the side of the fastener. Bolt heads are safetied in such a way that the loosening tendency of one will pull on the wire in a tightening direction on the other.
	• Whenthereis a clearance problem, safety wire may be passed over the end of the stud rather than around the nut.
	 Fillister-head screws may be safetied with a single wire.
	• To safety the adjustment of a control rod: after the length of the rod is adjusted, the socket end of the rod is safetied to the check nut, and then to the holes in the hex of the male end of the rod.
	 Safety a coupling nut on a flexible line to a straight connector brazed on a rigid tube, as shown.
	• Safety coupling nutsto a bulkhead fitting as shown:the coupling nut on the right is safetied to the hex on the bulkhead fitting.The bulkhead nut is tightened against the bulkhead and is safetied to a fixed point with the safety wire pulling on the nut in the direction of tightening.The coupling nut is safetied to the same fixed point.

T

There are many different applications for safety wiring in modern aircraft and engines, and some basic principles apply to all installations:

- 1. Before safety wiring a fastener, be sure that it is properly torqued.
- 2. Be sure to use the method of safety wiring specified in the airframe or engine maintenance manual.
- 3. Install the wire so that it always pulls the fastener in the direction of tightening. This will prevent the fastener from backing off if it should loosen.
- 4. Loop the wire around the outside of the fastener so that it is routed under the wire protruding from the hole. This causes the loop to stay down and prevents slackening. The direction of twist should reverse from run to run, and from run to pigtail. This reversal is done to hold the loop of wire down around the fastener.
- 5. Be sure that the twists are tight and even, and the twisted wire between the fasteners is taut but not too tight. The recommended number of twists per inch depends upon the diameter of wire.

Twists per inch
8 - 14
6-11
4-9

6. Besure that the pigtail at the end of the wire is no more than 3/4 inch long and has a minimum of 4 twists. Double the pigtail back, cut the end off, and bend it under so it will not snag or cut anything that rubs across it.

8.3 Washers

Plain washers, (examples of)	Uses	Description
AN 960	Provides smoothbearing surface for nut.	Steel or aluminum alloy
	 Serves as shim for bolt grip purposes. 	Hole with plain edges
	 Prevents sharp edges under lock washers from damaging material clamped. 	
AN 143C	• Used under the heads of high-strength internal- wrenching bolls such as NAS144(because of the radiusbetween the head and shank).	 Steel Hole has chamfered edges
AN 970	• When bolting woodstructures together: spreads force applied by bollandnutover larger area of the wood.	• Large area (outside diameter larger than AN 960)
AN 960 Plain Washer		

Lock Washers, Types	Uses	Description
Splitlock washer	• Prevent vibration from loosening nut by producing a stress between the nut and the material being clamped.	Heavy spring steel Cut and twisted
	•Notto beused on aircraft structure where failure of washer might result in damage or danger to aircraft or personnel.	
	nuts.	
Shakeproof lock washer	Teeth are twisted to produce the needed stress.	Thin spring steel with internal or external teeth
	 Primarily used with machine screws. 	oxioniariosin
Lock Washers		
Split	Internalshakeproof	External shakeproof

Ball Socket and Seat Washers	Uses	Description
AN 950 AN955	Used together as a pair to help clamp when it is impossible to get perfect alignment between the bolt andmaterial.	Ball socket Seat washer
AN 950 and AN 955 ball socket and seat washers		

8.4 Special Rivets

Solid rivets, the most widely used fasteners in aircraft construction, and their identification are covered in Section 9 *Metal Aircraft Fabrication*. Other types of rivets for special uses in aircraft materials and construction are listed below.

Blind Rivets

Often it is necessary to install rivets where there is access to only one side of the material, as opposed to solid rivets which require access to both sides for driving. There are a number of rivets that meet this need, such as the blind rivet types listed below.

NOTE: When using a blind rivet in a repair, it must be the rivet specified in the maintenance manual for the specific repair. The common pull-type Pop rivets such as those found in most hardware stores are not approved for use on certificated aircraft.

Frlc tlon•l.ock Rivets

- Made by the Townsend Division of Textron, approved for aircraft structure.
- May be used to replace a solid rivet in some Instances, but normally must have a diameter one size larger than the rivet it replaces.

To install a friction-lock rivet:

- 1. Insert it in the prepared hole, then grip and pull the serrated stem with a special tool.
- 2. This pulls the tapered plug up into the hollow shank and swells it to form the upset head inside the structure.
- 3. Continued pulling snaps the stem off and leaves the plug inside the shank.
- 4. Cut off the broken-off stem and fileit flush with the rivet head.

NOTE: Plug is held in the shank only with friction-it is postible that vibration can shake it out and weaken the joint.

5. To remove friction-lock rivets, punch the stem out of the rivet. Using a drill the diameter of the rivet shank, drill the head and tap the shank out of the skin with a properly fitting pin punch.

Mechanical-Lock Rivet•

- Normally approved to replace solid rivets on a size-for-size basis because the stem is locked into the hollow rivet shank and it cannot vibrate out.
- As strong or stronger than a solid rivet of the same diameter.
- Available with both universal heads and 100° countersunk heads.
- Standard and oversize diameters.
- Lengths measured in increments of 1/16 inch.

Installed in the same way as the friction-lock rivet:

- 1. As the stem is pulled, the head is forced firmly against the skin and the skins are pulled tightly together.
- 2. The shear ring on the bottom of the stem upsets the shank, forms the blind head inside the structure and swells the shank to completely fill the rivet hole.
- 3. Continued pulling of the stemshears off the shear ring and pulls the end of the stem up to form the bulbed head.
- 4. The locking collar is forcedinto the groove in the stem, holding it tight, preventing it vibrating loose.
- 5. The stem then breaks off flush with the nvet head.

CherryMax Rivets, Olympic-Lok Ri vets, Huck Rivets

- Mechanica-lockingblind rivets that are approved for use in aircraft structure.
- All function on the same principle as that described for the Bulbed Cherrylock rivet.

To remove mechanical-locked rivets:

- 1. File the head to weaken the locking ring.
- 2. Tap the stem out with a properly fitting pin punch.
- 3. Drill through the head of the rivet and tap the shank out of the hole with a pin punch.

High-Strength Pin Rivets

Pinrivets are a group of fasteners that have the strength of a bolted joint but are lighter weight and easier to install than a bolt, and are installed in locations where they are not likely to need to be removed.

Hi-Shear Rivet

• Has a heat-treated alloy steel pin equivalent or superior in strength to the AN bolt that it is approved to replace.

To install a Hi-Shear rivet:

- 1. Tap pin into a hole that has been drilled and reamed to an interference fit.
- 2. The grip length of the pin must be such that no more than 1/16-inch protrudes from the material.
- 3. Acollar is placed over the end of the pin and special rivet set in a rivet gun swages the collar down into the groove of the pin.
- Hi-Shear pin rivets are removed by splitting the collar with a small, sharp chisel and tapping the pin from the hole.

Hi-Lok Fa s ten ers

- Hi-Lok/Hi-Tigue fasteners are a product of the Hi-Shear Corporation; they are an improvement of the Hi-Shear piri rivet.
- Consists of a special precision-threaded pin, with either a flush or protruding head and a special collar.
- The pin is inserted in a reamed hole to provide a slight (up to 0.002-inch) interference fit.
- Of the two counterbores in the collar, the smaller and deeper one compensates for differences of material thickness by providing space for the threads when the grip length is long. The larger counterbore accommodates the bead of the Hi-Tiguepin.
- A Teflon insert forms a fluid-tight seal between the pin and the collar, allowing use in fuel tanks without the need for any sealant.

Installation:

- The collar is started on the pin by hand, then continued by an electric or pneumatic driving tool. The tool hasa hex wrench tip that fits into a hexagonal hole in the end of the pin to hold it and prevent its turning while the collar is being driven.
- A socket that exactly lits the collar driving hex turns it; as the collar contacts the surface of the material being joined, it pulls the pin up tightly and clamps the structural parts together.
- 3. Continued turning of the driving hex breaks it off at the shear-off groove, ensuring that the minimum-weight fastener is properly torqued without the need of an accurately-calibratedtorque wrench.

Hi-TigueF asten ers

- Similar to the Hi-Lok, except the pin has a slightly enlarged bead near the threaded area of the pin.
- The hole should be drilled and reamed so the bead area will have between a 0.002 and 0.004inch interference fit.
- Thepin is driven into the prepared hole with a conventional rivet gun and the opposite side of

the material is supported by a draw bar whose hole just lits over the pin.

• The interference fit holds the pin while the collar is driven and therefore does not need to be held with a hex wrench (as is done with the Hi-Lok pin).

Both the Hi-Lok and Hi-Tigue fasteners can be driven with an open end or box wrench, and the Hi-Lok pin can be held with an Allen wrench. Both fasteners may be removed by unscrewing the collar using a pair of vise-grip pliers or cutting away the collar with a hollow mill-type cutter. The pin may be reused if it is not damaged.

8.5 Cowling Fasteners

Aircraft cowling require fasteners that allow the pilot to open the cowling for preflight inspection without requiring special tools. Some fasteners hold the cowling tightly in place, yet allow it be opened with a quarter of a turn with a screwdriver, or even with a coin. The Dzus (pronounced zoos) fastener is one of the oldest and most popular cowling fastener.

Other fasteners, notably the Camloc and Airloc, are different physically but operate on the same principle as the Dzus, and are used for the same applications. Both of these fasteners turn a cross pin in the stud into a camshaped receptacle. In the Camlok fastener, the pin is spring loaded, and in the Airloc, the receptacle is made of spring steel.

- A wire spring is riveted across the hole in the fixed part of the cowling and a notched stud is assembled in the detachable part.
- The stud is held in its hole with an aluminum grommet that is swaged into the hole so it fills the notch just under the head of the stud, allowing it to turn but preventing it from falling out.

- When the cowling is closed, the stud fits through the hole in the fixed part and the notch straddles the spring.
- A clockwise quarter turn forces the cam-shaped notch to pull the spring up and hold the detachable part of the cowling tight against the fixed structure.

8.6 Thread Repair Hardware

There are a number of aluminum castings in an aircraft, particularly in the engine. These castings are relatively soft and the threads are easy to strip out, so provisions are made to repair the damage rather than replace the expensive component.

Helicon Insert

Oneof the handiest and most useful thread repair tools is the Helicoil insert. Damaged threads are drilled out with a special drill and new threads are tapped in using a special Helicoil tap.

Helicoil inserts are used not only in repair work, but some engine manufacturers use them rather than bushings for the threads in the spark plug holes. The inserts give more durable threads than the cast

aluminum cylinder head andmay be replaced if they are ever damaged.

- 1. The insert, a coil of stainless steel wire with a diamond-shapedcrosssection, is placed on the insertion tool with the slot in the end of the tool straddling a driving tang at the end of the insert.
- 2. As the insert is screwed into the new threads, it is wound tighter and its outside diameter decreases enough that it can screw in easily.
- 3. When the insert is screwed in all the way, the tool is reversed, the driving tang breaks off and the spring force of the insert expands it outward, holding it tightly in the threads.
- 4. The inside of the insert now acts as the new threads into which the bolt can be screwed.

Acres Sleeves

Corrosion often damages the threaded area in aluminum alloy castings; these can be repaired with Acres sleeves.

- 1. The damaged hole is drilled out 1/64-inch oversize to clean up the damage or corrosion.
- 2. A bonding agent is applied to the outside of the insert and it is pressed into the hole.
- 3. When the bonding agent cures the threads on the inside, the sleeve allows the original fastener to be installed.
- Grooves around the outside of an Acres sleeve allows it to be broken off to a length correct for the material into which it is inserted and to hold the bonding agent.

Section 9: Metal Aircraft Fabrication

- 9.1 Sheet Metal Layout and Forming Page207
- 9.2 Minimum Bend Radii for 90° Bends in Aluminum Alloys Page 211

- 9.3 Setback Page212
- 9.4 Bend Allowance Chart Page 215
- 9.5 Rivets and Riveting Page 218
9.1 Sheet Metal Layout and Forming

Definit ions

bend radius (BR)-Theadius of the *inside* of the bend.

bend allowance-Theactual amount of metal used in the bend.

setback(SB)-Thedistance between the bend tangent line and the mold line.

- K-A multiplier used to find the bend allowance for bends of angles other than 90°.
- neutral line- The line through a material that has no stresses imposed by a bend; material along the neutral axis neither shrinks nor stretches when the materialis bent.
- mold line- The extension of the flat side of an object beyond the radius.
- sight line-A line drawn on a sheet metal layout that is placed directly below the nose of the radius bar in a leaf brake.

open angle A bend in which the metal is bent less than go.

closed angle- A bend in which the metal is bent more than go.

bend tangent line-Thane in a sheet metal layout that marks the end of a flat surface and the beginning of the bend.

Layout Procedure

Example

MLL1 = 1.00 inch MLL2 = 2.00 inch MLL3 = 1.00 inch BR = 0.25 inch Thickness = 0.040 inch

1. Find the setback by adding the bend radius and the metal thickness.

$$SB = (BR + MT) \times K$$

= (Q.250 + 0.040) × 1
= 0.290 inch

The value of the constant K can be found in the chart on Pages 212 through 214.

For a 90° bend, K = 1

2. Find the length of flat 1 by subtracting the setback from mold line length 1.

Flat 1= MLL1 - setback = 1.00 - 0.290 = 0.710

3. Find the bend allowance by using the chart on Pages 215 through 217.

Follow the 0.040 metal thickness row across to the column for 1/4-inch bend radius. The top number is the amount of bend allowance for a 90° bend, and the bottom number is the amount of material used for each degree of bend. In the example, a 90° bend in a piece of 0.040 sheet metal using a 1/4-inch bend radius requires 0.421 inch of metal.

4. Find the length of flat 2 by subtracting two setbacks from mold line length 2.

Flat 2 = MLL 2 - 2 setbacks

= 2.00 - 2(0.290)

= 1.42 inch

5. Bend allowance 2 is the same as bend allowance 1.

BA 2 = 0.421 inch

6. Find the length of flat 3 by subtracting the setback from mold line length 3.

Flat 3 = MLL 3 - Setback

= 1.00 - 0.290

= 0.710 inch

7. Cut the material 3.68 inches wide and as long as needed. Mark the bend tangent lines with a sharp-pointed soft lead pencil.

Fanning

- 1. Clamp the metal in the brake with the bend tangent lines *even* with the beginning of the radius of the radius bar.
- 2. Youcan determine this position by drawing a sight line inside the bend allowance material. Draw this line one bend radius from the bend tangent line.
- Position the material so this sight line is directly below the edge of the radius block when viewing it perpendicular to the surface of the metal.
- 4. When the brake leaf is raised, the metal will fom is moothly around the radius bar.

9.2 Minimum Bend Radii for 90° Bends in Aluminum Alloys

Alloy and		Sheet Thickness						
Temper	0.020	0.025	0.032	0.040	0.050	0.063	0.071	0.080
2024-0 ¹	1/32	1/16	1/16	1/16	1/16	3/32	1/8	1/8
2024-T4 ¹ 2	1/16	1/16	3/32	3/32	1/8	5/32	7/32	1/4
5052-0	1/32	1/32	1/16	1/16	1/16	1/16	1/8	1/8
5052-H34	1/32	1/16	1/16	1/16	3/32	3/32	1/8	1/8
6061-0	1/32	1/32	1/32	1/16	1/16	1/16	3/32	3/32
6061-T4	1/32	1/32	1/32	1/16	1/16	3/32	5/32	5/32
6061-T6	1/16	1/16	1/16	3/32	3/32	1/8	3/16	3/16
7075-0	1/16	1/16	1/16	1/16	3/32	3/32	5/32	3/16
7075-W	3/32	3/32	1/8	5/32	3/16	1/4	9/32	5/16
7075-T6 ¹	1/8	1/8	1/8	3/16	1/4	5/16	3/8	7/16

¹ Clad sheet may be bent over a slightly smaller radii than the corresponding tempers of bare alloy sheets.

² Immediately after quenching, this alloy may be formed over appreciably smaller radii.

9.3 Setback

Setback for a 90° bend is the bend radius plus the metal thickness (BR+ MT). For any angle other than 90°, the sum of the bend radius and the metal thickness must be multiplied by the value of "K" found in the setback (K) chart below.

Degrees	ĸ	Degrees	к
1	0.00873	18	0.15838
2	0.01745	19	0.16734
3	0.02618	20	0.17633
4	0.03492	21	0.18534
5	0.04366	22	0.19438
6	0.05241	23	0.20345
7	0.06116	24	0.21256
8	0.06993	25	0.22169
9	0.07870	26	0.23087
10	0.08749	27	0.24008
11	0.09629	28	0.24933
12	0.10510	29	0.25862
13	0.11393	30	0.26795
14	0.12278	31	0.27732
15	0.13165	32	0.28674
16	0.14054	33	0.29621
17	0.14945	34	0.30573

Setback (K) Chart

Degrees	К	Degrees	К
35	0.31530	79	0.82434
36	0.32492	80	0.83910
37	0.33459	81	0.85408
38	0.34433	82	0.86929
39	0.35412	83	0.88472
40	0.36397	84	0.90040
41	0.37388	85	0.91633
42	0.38386	86	0.93251
43	0.39391	87	0.80978
44	0.40403	88	0.96569
45	0.41421	89	0.9827
46	0.42447	90	1.0000
47	0.43481	91	1.0176
48	0.44523	92	1.0355
49	0.45573	93	1.0538
50	0.46631	94	1.0724
51	0.47697	95	1.0913
52	0.48773	96	1.1106
53	0.49858	97	1.1303
54	0.50952	98	1.1504
55	0.52057	99	1.1708
56	0.53171	100	1.1917
57	0.54295	101	1.2131
58	0.55431	102	1.2349
59	0.56577	103	1.2572
60	0.57735	104	1.2799
61	0.58904	105	1.3032
62	0.60086	106	1.3270
63	0.61280	107	1.3514
64	0.62487	108	1.3764
65	0.63707	109	1.4019
66	0.64941	110	1.4281
67	0.66188	111	1.4550
68	0.67451	112	1.4826
69	0.68728	113	1.5108
70	0.70021	114	1.5399
71	0.71329	115	1.5697
72	0.72654	116	1.6003
73	0.73996	117	1.6318
74	0.75355	118	1.6643
75	0.76733	119	1.6977
76	0.78128	120	1.7320
77	0.79543	121	1.7675
78	0.80978	122	1.8040

T

Degrees	K	Degrees	к
123	1.8418	152	4.0108
124	1.8807	153	4.1653
125	1.9210	154	4.3315
126	1.9626	155	4.5107
127	2.0057	156	4.7046
128	2.0503	157	4.9151
129	2.0965	158	5.1455
130	2.1445	159	5.3995
131	2.1943	160	5.6713
132	2.2460	161	5.9758
133	2.2998	162	6.3137
134	2.3558	163	6.6911
135	2.4142	164	7.1154
136	2.4751	165	7.5957
137	2.5386	166	8.1443
138	2.6051	167	8.7769
139	2.6746	168	9.5144
140	2.7475	169	10.385
141	2.8239	170	11.430
142	2.9042	171	12.706
143	2.9887	172	14.301
144	3.0777	173	16.350
145	3.1716	174	19.081
146	3.2708	175	22.904
147	3.3759	176	26.636
148	3.4874	177	38.188
149	3.6059	178	57.290
150	3.7320	179	114.590
151	3.8667	180	Infinite

9.4 Bend Allowance Chart

The top number in each group of numbers (at the intersections of the metal thickness rows and bend radius columns) is the bend allowance for a 90° bend. The bottom number is the bendallowance for each degree of bend.

Metal			R	adius of be	end (inches)	
thickness	1/32	1/16	3/32	T/8	5/32	3/16	7/32
0.020	062	112	161	210	250	200	250
0.020	.002	,115	.101	.210	.259	.309	.358
0.025	.000693	.001251	.001792	.002333	.002874	.003433	.0039n
0.025	.066	.116	.165	.214	.263	.313	.362
	,000736	.001294	.001835	.002376	.002917	.003476	.004017
0.028	, 068	.119	.167	.216	.265	.315	.364
	,000759	.001318	.001859	.002400	.002941	.003499	.004040
0.032	,071	.121	.170	.218	.267	,317	.366
	.000787	.001345	.001886	.002427	.002968	.003526,	00406 7
0.038	.075	.126	.174	.223	.272	.322	.371
	.000837	.001396,	001937	.002478	.003019	.003577	,004118
0.040	.077	.127	.176	.224	.273	.323	.372
	.000853	.001411	,001952	,002493	.003034	.003593,	004134
0.051		,134	.183	.232	.280	.331	.379
		.001413	.002034	.002575	,003116	003675	,004215
0.064		.144	.192	.241	.290	.340	.389
		,001595	,002136	.002676	.003218	.003776	.004317
0.072			.198	.247	.296	.346	.394
			.002202	.002743	,003284	.003842	004283
0.078			.202	.251	.300	.350	.399
			.002249	.002790	.003331	.003889	.004430
0.081			.204	.253	.302	.352	.401
			.002272	.002813	.003354	.003912	.004453
0.091			,212	260	.309	.359	.408
			.002350	.002891	.003432	.003990	.004531
0094			.214	.262	,311	,361	.410
			.002374	.002914	.003455	.004014	.004555
0.102				.268	.317	.367	.416
				.002977	.003518	.004076	.004617

Metal			R	adiusofbe	nd(inches)	
thickness	1/32	1/16	3/32	1/8	5/32	3/16	7/32
0.109				.273	.321	.372	.420
				.003031	.003572	.004131	.004672
0.125				.284	.333	.383	.432
				.003156	.003697	.004256	.004797
0.156					355	.405	.453
					.003939	.004497	.005038
0.188						.417	.476
						.004747	.005288

Metal thickness	1/4	9/32	R 5/16	adius of be 11/32	nd(inches 3/8) 7/16	1/2
0.020	.406	.455	.505	.554	.603	.702	.799
	.004515	.005056	.005614	.006155	.006695	.007795	.008877
0.025	.410	.459	.509	.558	.607	.705	.803
	.004558	.005098	.005657	.006198	.006739	.007838	.008920
0.028	.412	.461	.511	.560	.609	.708	.805
	.004581	.005122	.005680	.006221	.006762	.007862	.008944
0.032	.415	.463	.514	.562	.611	.710	.807
	.004608	.005149	.005708	.006249	.006789	.007889	.008971
0.040	.421	.469	.520	.568	.617	.716	.813
	.004675	.005215	.005774	.006315	.006856	.007955	.009037
0.051	.428	.477	.527	.576	.624	.723	.821
	.004756	.005297	.005855	.006397	.006934	.008037	.009119
0.064	.437	.486	.536	.585	.634	.732	.830
	.004858	.005399	.005957	.006498	.007039	.008138	.009220
0.072	.443	.492	.542	.591	.639	.738	.836
	.004924	.005465	.006023	.006564	.007105	.008205	.009287
0.078	.447	.496	.546	.595	.644	.745	.840
	.004963	.005512	.006070	.006611	.007152	.008252	.009333
0.081	.449	.498	.548	.598	.646	.745	.842
	.004969	.005535	.006094	.006635	.007176	.008275	.009357
0.091	.456	.505	.555	.604	.653	.752	.849
	.005072	.005613	.006172	.006713	.007254	.008353	.009435
0.094	.459	.507	.558	.606	.655	.754	851
	.005096	.005637	.006195	.006736	.007277	.008376	.009458

Metal			R	adius of be	end (Inches	s)	
thickness	1/4	9/32	5/16	11/32	3/8	7/16	1/2
0.102	.464	.513	.563	.612	.661	.760	.857
	.005158	.005699	.006257	.006798	,007339	,008439,	009521
0.109	.469	.518	.568	.617	.665	.764	.862
	.005213	.005754	.006312	.006853	.007394	.008493	.009575
0.125	.480	.529	.579	.628	.677	.776	.873
	.005338	.005878	.006437	.006978	.007519	.008618	.009700
0.156	.502	.551	.601	.650	,698	,797	.895
	.005579	.006120	.006679	.007220	.007761	.008860	.009942
0.188	.525	.573	.624	.672	.721	.820	.917
	.005829	.006370	.006928	.007469	.008010	.009109	.010191
0.250	.568	.617	.667	.716	.764	.863	.961
	.006313	.006853	.007412	.007953	.008494	.009593	.010675

The empirical formula for bend allowance for each degree of bend is:

Bend Allowance= (0.01743 R) + (0.0078 T)

R = BendRadius

T = Metal Thickness

9.5 Rivets and Riveting

Solid rivets are the most widely-used fastening devices for sheet metal aircraft construction.

Alternati ve s to Riveting

- Milled skins reduce the number of stringers and stiffeners, and eliminate the need for many rivets.
- · Composite structure is bonded and does not require rivets.
- Welding has not proven to be a viable alternative because of the nature of sheet aluminum alloy.

Aircraft Solid Rivets

Most of the rivets used in aircraft structure range in diameter from 3/32-inch to 1/4-inch and most are made of an aluminum alloy. They are available with either a protruding head or a flush head.

Rivet Head Shapes

After WW 11, aircraft manufactures adopted the universal head rivet to replace all protruding head rivets, and the 100° countersunk head rivet to be used for almost all flush riveting requirements.

- AN 441 Used in internal structure
- AN 456 Replaced with MS20470
- MS20426 Most widely-used flush rivet
- · MS20470 Most widely used protruding head rivet
- AN 430 Replaced with MS20470
- AN 425 Replaced with MS20426

Rivet Mat erial

- Nonstructural applications of 1100 or 3003 aluminum may be riveted with the soft 1100 (A) rivet.
- Bare or clad 2024-T4 aluminum alloy is generally riveted with 2117 (AD) rivets. AD rivets may be driven as they are received from the manufacturer without additional heat treatment.
- When greater strength is needed than can be provided by an AD rivet, a 2017 (D) or 2024 (DD) rivet may be used. Both D andDD rivets require heat treatment before they are driven. These rivets are soft enough to drive immediately after they are removed from the quench bath, but will begin to harden within 10 minutes if left at room temperature. The hardening can be delayed for several days if they are immediately stored in a sub-zero refrigerator.
- Magnesium structural parts may be joined with 5056 aluminum alloy (B) rivets. B rivets may be driven as received from the manufacture.r
- High-strengthaluminum alloy with zinc as its chief alloying agent must be riveted with 7050-T73 and 7075-T73 rivets.
- Titanium structure must be riveted with titanium rivets.

Rivet Diameter

- Diameter chosen must allow a riveted joint to fail by the rivets shearing rather than the sheet metal tearing at the rivet holes.
- A general rule of thumb is for the rivet diameter to be three times the thickness of the thickest sheet being joined.
- Refer to the charts on Pages 212-215 to select the diameter and number of rivets to use in a repair.
- The columns in these charts represent the rivet diameter, and the rows the metal thickness. The numbers represent the number of rivets per inch for a single lapsplice.
- One number in each column is underlined. A riveted joint using rivets listed below the underlined number will fail by the rivets shearing, and those above this underline will fail by tearing out of the rivet holes.

Rivet head markings identify the metal of which the rivet Is made.

Head Mark	Alloy	Code
Plain O	1100	A
Recessed dot	2117T	AD
Raised dot	2017T	D
Raised double dash	2024T	DD
Raised cross EB	5056 H	8
Three raised dashes to	7075T73	
Raised circle	7050T73	Е
Recessed large and O	Titanium	
Recessed dash	Corrosion resistant steel	F
Recessed triangle	Carbon steel	

Numbe r of Rivets or Bolts Required for Single-Lap Splices In Bare 2017, Clad 2017, Clad 2024-T3 Sheet, and 2024-T3 Plate, Bar, Rod, Tube and Extrusions

Thickness of metal	Numbe needeo	Number of AD protruding head rivets needed per inch width 'W					
(incries)		R	ivet Diame	eter			
	3/32	1/8	5/32	3/16	1/4	AN-3	
0.016	6.5	4.9					
0.020	6.5	4.9	3.9				
0.025	6.9	<u>4.9</u>	3.9				
0.032	8.9	4.9	3.9	3.3			
0.036	10.0	5.6	<u>3.9</u>	3.3	2.4		
0.040	11.1	6.2	4.0	3.3	2.4		
0.051		7.9	5.1	3.6	2.4	3.3	
0.064		9.9	6.5	4.5	2.5	3.3	
0.081		12.5	8.1	5.7	3.1	3.3	
0.091			9.1	6.3	3.5	3.3	
0.102			10.3	7.1	3.9	3.3	
0.128			12.9	8.9	4.9	3.3	

NOTES:

1. For stringers in the upper surface of a wing, or in a fuselage, 80% of the number of rivets shown may be used.

2. For intermediate frames, 60% of the number of rivets shown may be used.

3. For single-lap sheet joints, 75% of the number shown may be used.

Number of Rivets or Bolts Required for Single-Lap Splices in 5052 (AllHardness) Sheet

Thickness of metal	Numbe needec	Number of AD protruding head rivets needed per inch width "W"					
(inches)		Ri	vet Diame	eter			
	3/32	1/8	5/32	3/16	1/4	AN-3	
0.016	6.3	4.7					
0.020	6.3	4.7	3.8				
0.025	6.3	4.7	3.8				
0.032	6.3	4.7	3.8	3.2			
0.036	7.1	4.7	3.8	3.2	2.4		
0.040	7.9	4.7	3.8	3.2	2.4		
0.051	10.1	5.6	3.8	3.2	2.4		
0.064	12.7	7.0	4.6	3.2	2.4		
0.081		8.9	5.8	4.0	2.4	3.2	
0.091		10.0	6.5	4.5	2.5	3.2	
0.102		11.2	7.3	5.1	2.8	3.2	
0.128			9.2	6.4	3.5	3.2	

NOTES:

1. For stringers in the upper surface of a wing, or in a fuselage, 80% of the number of rivets shown may be used.

2. For intermediate frames, 60% of the number of rivets shown may be used.

3. For single-lap sheet joints, 75% of the number shown may be used.

Examples of Rivet Selection

- Use the chart on Page 221 to find the minimum number of rivets needed to make a splice on an intermediate frame using a single-lap joint, 2024 clad sheet aluminum 0.040-inch thick, with 1/8-inch 2117-AD rivets.

- 1. At the intersection of the 1/8-inch rivet column and the 0.040-inch metal thickness row, notice that 6.2 rivets per inch are needed for full strength This choice is below the underlined number in this column, indicating the joint will fail by the rivets shearing, as it should, rather than the rivet holes tearing out.
- 2. According to NOTE 2, an intermediate frame requires only 60% of this number, therefore 3.72 rivets per inch is required for the splice.

- Use the chart on Page 222 to find the minimum number of rivets needed to make a single-lap joint in 5052-H36 sheet aluminum 0.064-inch thick, with 5/32-inch 2117-AD rivets.

- 1. At the intersection of the 5/32-inch rivet column and the 0.064-inch metal thickness row, notice that 4.6 rivets per inch are needed for full strength. This choice is below the line in this column, indicating the joint will fail by the rivets shearing, as it should, rather than the rivet holes tearing out.
- 2. A single-lap sheet joint requires only 75% of this number, therefore 3.45 rivets per inch is required for the joint.

Rivet Length

- The shop head on a rivet should have a diameter of one and one-half times the diameter of the shank, and its thickness should be one-half of the shank diameter.
- To get this size head, the shank should stick through the material by a distance of one and one-half times the shank diameter.

Riveting Tools Rivet Sets

- Rivetsets fit over the manufactured head of a rivet and are driven by the rivet gun.
- For protruding-head rivets, the cup in the rivet set should have a slightly larger radius than the head of the rivet.
- The rivet set for driving flush rivets is slightly crowned and highly polished so it will not mark the skin.

Bucking bar selection				
Rivet Diameter (Inch)	Bucking Bar Weight (pounds)			
3/32	2 to 3			
1/8	3 to 4			
5/32	3.5 to 4.5			
3/16	4 to 5			
1/4	5 to 6.5			

- The rivet set is held tightly against the manufactured head of the rivet, and a bucking bar of hardened and polished steel is held squarely against the end of the rivet shank. The blows from the rivet gun cause the bucking bar to bounce on the end of the rivet shank and flatten it.
- The shape of a bucking bar must be chosen so it can lit squarely on the end of the rivet, and the weight of the bar must be compatible with the rivet diameter.

Bucking Bars

In stalling Flush Rivets

- If the top skin is thicker than the head of the rivet, it should be countersunk to a depth that will cause the top of the rivet to be flush with theskin.
- It is permissible, but not recommended, to countersink the top skin if its thickness is the same as the thickness of the rivet head.
- If the top skin is thinner than the rivet head, the skin should be dimpled either by coin or radius dimpling.

Blind Rivet Code

When team riveting, with the gunner unable to see or hear the bucker, this codeserves for communications:

One Tap - Start riveting Two Taps - Rivet OK Three Taps - Bad rivet, mark it and move to next one.

Removal of Damaged Rivets

Use pin punch the size of the hole, pry the head off rivet or use capechisel to cut headoff.

Buck up metal with bucking bar beside shop head and use pinpunch to drive shank from the metal.

Minimum Rivet Spacing and Edge Distance

DOUBLE ROW

TRIPLE OR MULTIPLE ROWS

You must determine that the repaired structure will be at least as strong and rigid as the original, and If the repair is made to an external skin it must have no adverse effect on the airflow. To obtain proper strength from a riveted joint, the rivet spacing and edge distance shown here must be observed. If a rivethole has been damaged when a rivet is being replaced, the next size larger rivet may be used provided the rivet spacing and edge distance are within the limits shown here.

Section 10: Aircraft Fabric Covering

10.1 Rib Stitch Spacing Page229

10.2 RibStitch Knots Page 230

Almost all modern aircraft are of either all-metal or composite construction. Fabric covering is used only on older airplanes and some modem ultralight aircraft.

When a fabric-covered aircraft is being recovered, the type of materials crafted in its original manufacture must be used. One of the modern materials (much stronger and of longer-life) may be used if it has been approved as an alteration for the particular aircraft. This approval is normally accomplished with a Supplemental Type Certificate obtained by the manufacturer of the covering system.

10.1 Rib Stitch Spacing

If for any reason the original rib stitch spacing cannot be determined, use the spacing indicated by the chart below. For the purpose of this chart the slipstream is the diameter of the propeller plus one rib on each side.

Placard Never-Exceed Speed- MPH Indicated

10.2 Rib Stitch Knots

A modified seineknot is used to tie the rib stitchcordaround each rib.

Knot Formed But NotTightened	
Pull to tighten	Pull to tighten
.!	<u> .</u>
Knot Completed	_
	Load

i

A splice knot is used to join two pieces of waxed rib stitchcord.

Section 11: Corrosion Detection and Control

- 11.1 Types of Corrosion Page235
- 11.2 Oxidation Page237
- 11.3 Surface and Pitting Corrosion Page238
- 11.4 Intergranular Corrosion Page239
- 11.5 Stress Corrosion Page240
- 11.6 Galvanic Corrosion Page240
- 11.7 Concentration Cell Corrosion Page241
- 11.8 Fretting Corrosion Page242
- 11.9 Filiform Corrosion Page242
- 11.10 Corrosion Control Page243

11.1 Types of Corrosion

There are several types of corrosion that attack aircraft. Some types, like iron rust, continue to eat the metal until it is all gone; but others, like aluminum oxidization, form a dense film that prevents oxygen from reaching the metal, and the corrosive action almost stops.

Appearance of Corrosion on Various Metals		
Alloy	Type of Attack To Which Alloy is Susceptible	Appearance of Corrosion Product
Magnesium	Highly susceptible to pitting	White, powdery, snowlike mounds and white spots on the surface
Low alloy steel	Surface oxidation and pitting, surface, and intergranular	Reddish-brown oxide (rust)
Aluminum	Surface pitting, intergranular, exfoliation, stress-ccrrosion and fatigue cracking, and fretting	White to gray powder
Titanium	Highly corrosion resistant; extended or repeatedcontact with chlorinatedsolvents may result in degradation of the metal's structural properties at high temperature	No visible corro- sion products at low temperature. Colored surface oxides develop above 700°F (370°C)
Cadmium	Uniform surface corrosion; used as sacrificial plating to protect steel	From white pow- dery deposit to brown or black mottling of the surface

(continued)

Appearance of Corrosion on Various Metals		
Alloy	Type of Attack To Which Alloy Is Susceptible	Appearance of Corrosion Product
Stainless Steels (30()-400 series)	Crevice corrosion; some pitting in marine environ- ments; corrosion cracking; intergranular corrosion (300 series); surface corrosion (400 series)	Rough surface; sometimes a uni- form red, brown stain
Nickel-base (Inconel, Monel)	Generally has good corro- sion-resistant qualities; susceptible to pitting in sea water	Green powdery deposit
Copper-base brass, bronze	Surface and intergranular corrosion	Blue or blue-green powdery deposit
Chromium (plate)	Pitting (promotes rusting of steel where pits occur in plating)	No visible corro- sion products; blistering of plating due to rusting and lifting
Silver	Will tarnish in the presence of sulfur	Brown to black film
Gold	Highly corrosion-resistant	Deposits cause darkening of reflective surfaces
Tin	Subject to whisker growth	Whisker-like deposits

11.2 Oxidation

Туре	Reaction Upon Exposure to Air	Protect Against
Aluminum Oxidation	 When pure aluminumis exposed to the air, a chem- ical reaction takes place between the metal and the oxygen. Aluminum oxide forms on the surface and produces a dull, rough appearance. Once the oxide forms, it insulates the surface from the air and any further reac- tion continues at a greatly reducedrate, or almost stops. 	• Protect alumi- num alloys from oxidation by electrolytically or chemically form- ing a hard oxide film on its surface.
Iron Oxidation	• When any metal containing ironis exposed to the air, iron oxide (or, rust) forms. Iron oxide is porous, and the iron willcontinueto reactrust until it is completely destroyed.	Protect metals containing iron from rust: • <i>temporarily</i> by covering the surface with oilor grease, or • <i>permanently</i> by plating it with cadmium or chromium, or by covering it with paint.

11.3 Suriace and Pitting Corrosion

When unprotected metal is exposed to an atmosphere containing industrial contaminants, exhaust or battery fumes, corrosion will form on the surface giving it a dull appearance

Reaction	Results	Appearance
• Contaminants react with the metal, changing micro- scopic amounts of it into the salts of corrosion.	• If these deposits are not removed and the surfaceprotected, pits of corrosion will form at localized anodic areas. Corrosion will continue in thesepits, changing the metal into salts.	 Pitting corrosion shows up as small blisters on the surface of the metal. Blisters are full of white powder.

11.4 Intergranular Corrosion

Aluminum alloys are made of tiny grains of aluminum and the various alloying elements.

- Heating the metal causes the alloying elements to go into a solid solution with the aluminum.
- Quenching the metal in cold water locks the alloying elements and the aluminum together into the tiny grains.

Reactions	1. As the metal cools, the grains enlarge. A delay in quenching for even a few seconds will allow the grains to become large enough to produce anodic and cathodic areas that allow intergranular corrosion to form.
Results	2. Corrosion started on the surface can reach the boundaries of some enlarged grains, and continue inside the metal. Electrolyte travels from the surface through the porous salts and along the grain boundaries.
Appearance	 Intergranular corrosion is difficult to detect because it is inside the metal. It sometimes, but not always, shows up as a blister on the surface.
Detection	 Intergranular corrosion can be detected by ultrasonic or X-ray inspection; once It is detected, the only sure fix is the replacement of the part.

Exfollation Corrosion

- An extreme form of intergranular corrosion.
- Occurs chiefly in extruded materials such as channels or angles where the grain structure is layer-like, or laminar.
- Occurs along the grain boundaries, and causes the material to separate or delaminate. By the time it shows up on the surface, the strength of the metal has been destroyed.

11•5 Stress Corrosion

A type of intergranular corrosion that forms in a metal subjected to a tensile stress in the presence of a corrosive environment.

- 1. Stresses may come from improper quenching after heattreatment, from a fitting or bushing that has been pressed into a structural part with an interference fit, or from tapered pipe fittings.
- Cracks caused by stress corrosion grow rapidly as the corrosive attack concentrates at the end of the crack, rather than along its sides as it does in other types of intergranular corrosion.
- Visual inspection may indicate the presence of stress corrosion; but to determine the extent of the damage, dye penetrant, eddy current, or ultrasonic inspection must be used.

11.6 Galvanic Corrosion

Occurs any time two dissimilar metals are in electrical contact in the presence of an electrolyte. The rate at which corrosion occurs depends on the galvanic groups of the two metals. The greater the difference between the groups, the more active the corrosion.

Galvanic Grouping of Metals	
Group I	Magnesium and magnesium alloys
Group	Aluminum, aluminum alloys, zinc, cadmium, and cadmium- titanium plate
Group III	Iron, steel (except stainless steel), lead, tin and their alloys
Group IV	Copper, brass, bronze, copper-beryllium,copper-nickel, chromium, nickel, nickel-base alloys, cobalt-base alloys, graphite, stainless steels, titanium, and titanium alloys

Galvanic Corrosion	
Cause	 Forms where dissimilar metal skins are riveted together, and where aluminum alloy inspection plates are attached with steel screws.
Results	 The material in the lower number group is the anode, and is the one corroded. When a steel screw (Group III) is usedin 2024 aluminum alloy (Group 11) the alum inum alloy will become the anode and is corroded. When a sheet of 2024-T3 aluminum alloy (Group 11) is riveted to a piece of magnesium alloy (Group I) the magnesium will corrode.

11.7 Concentration Cell Corrosion

Two types of concentration cell corrosion affect aircraft structure:

- Low oxygen concentration cell corrosion attacks areas where oxygen is excluded from the surface. These areas are in the faying surface of riveted joints where skins overlap, under the ferrules on aluminum alloy tubing, and under nameplates and decals on aluminum alloy components.
- 2. High metal-ion concentration cell corrosion attacks areas in the open

of corrosion occur at the same time in the same general areas of an aircraft structure.

along the edges of lap joints in aircraft skins. Most generally, both types

11.8 Fretting Corrosion

Fretting corrosion forms between two surfaces that fit tightly together, but can move slightly relative to one another. These surfaces are not normally close enough together to shut out oxygen, so the protective oxide coatings can form on the surfaces. However, this coating is destroyed by the continued rubbing action.

- When the movement between the two surfaces is small, the debris between them does not have an opportunity to escape, and it acts as an abrasive further eroding the surfaces. Fretting corrosion around rivets in a skin is indicated by dark deposits streaming out behind the rivet heads.
- By the time fretting corrosion appears on the surface, enough damage is usually done that the parts must be replaced.

11.9 Filiform Corrosion

FIIIform corrosion consists of threadlike filaments of corrosion on the surface of metals that are coated with organic substances such as paint films.

- Does not require light, electrochemical differences within the metal, or bacteria, but takes place only in relatively high humidity, between 65% and 95%.
- The threadlike filaments are visible under clear lacquers and varnishes, but also occur under opaque paint films such as polyurethane enamels, especially when an improperly cured wash Il{imer has left some acidon the surface beneath the enamel.

11.10 Corrosion Control

The thin, highly reactive aircraft structural metals make them especially vulnerable to corrosion. Once corrosion has started in a structure, it opens the way for more, and the corrosion spreads until the structure is destroyed.

Corrosion cannot be prevented, but it can be controlled by eliminating one or more of the basic requirements for its formation:

- 1. Prevent the electrical potential difference within the metal.
- 2. Insulate the conductive path between areas of potential difference.
- 3. Eliminate any electrolyte that could form a conductive path on the surface of the metal.

Corrosion itself is highly complex, but its control is mainly a matter of good housekeeping:

- 1. Keep the structure clean and dry, and immediately repair any breaks in the finish.
- 2. Promptly remove any corrosion that is found, and treat the surface from which the corrosion was removed in order to neutralize any residue and inhibit further corrosion formation.

NOTE: Modem surface treatments, sealers, and finishes are complex, and they will not tolerate any improper procedures in mixing or application. It is imperative that the specific instructions from the manufacturer of these products be followed in detail.
Section 12: Nondestructive Inspection

- 12.1 Visual Inspection Page 247
- 12.2 TapTest Page 248
- 12.3 Penetrant Inspection Page 249
- 12.4 Magnetic Particle Inspection Page 250
- 12.5 5 Eddy Current Inspection Page 251
- 12.6 Ultrasonic Inspection Page253
- 12.7 Radiography Page253

12.1 Visual Inspection

NDI

The complexity, highcost, and long life of modern aircraft and engines have made nondestructive inspection, or NOi, an extremely important aspect of aviation maintenance.

Visual Inspection

Visual inspection, the least expensive and most widely used inspection method, is an important adjunct to all other types of inspection. There are two basic types: surface inspection and internal inspection.

Surface Visual Inspection

- Requires a strong flashlight, a 2X to a 1OX magnifying glass, and a mirror, preferably one with a ball joint.
- Flashlights used in an explosive environment such as in fuel tanks must be explosion proof. Flashlights with krypton and halogen bulbs give out far more light than standard incandescent bulbs.
- Cracks and deformations show up most clearly when the light is shined on the surface toward the viewer at a low angle to the surface.
- Any suspect area must be clean and free of all paint-and if warranted, inspected with some other NOi method such as a penetrant or eddy current inspection.

Internal Visual Inspection

Borescopes have made internal visual inspection practical as it is no longer necessary to disassemble an engine or a piece of airframe structure to see inside of it. Three types of internal visual inspection instruments are commonly used in aircraft maintenance shops:

- A rigid -tube borescope has a controllable power source to regulate the intensity of the light produced by a lamp in the end of the scope tube. An orbital scan control on the body of the instrument allows different areas within the component to be scanned.
 - a) Insert the tube into the appropriate inspection port and adjust the light.
 - b) Aim the instrument at the area to be inspected and focus it to get the sharpest image.

- Flexible fiber-optic scopes consist of a light guide and an image guide made of bundles of transparent fibers enclosed inside a protective sheath. A power supply with a controllable light source is connected to the light guide, and an eyepiece lens allows the user to view the area at the end of the image guide. Bending and focusing controls guide the probe inside the component and focus the lens to get the clearest image of the area.
- Borescopes with video-imaging capability have a sensor in the tip of the probe which acts as a miniature video camera. The image is digitized, enhanced, and displayed on a video monitor. Then it is recorded on video tape or a disk to provide a permanent record of the interior of the component.

12.2 Tap Test

A quick nondestructive test of composite structure to determine the presence of delaminations:

- Tap the area to be inspected with the edge of a coin.
 - If there is no delamination, the coin will produce a clear ringing sound.

-If there is delamination, the sound will be a dull thud.

• The coin tap procedure is not a quantitative test, but it gives an indication when further investigation is needed.

12.3 PenerantInspection

Fluorescent and visible-dye penetrant inspection can be used on nonporous metallic or nonmetallic materials to detect faults that extend to the surface and are too small to be seen with normal visual inspection.

- 1. Part being inspected must be thoroughly clean and dry so the penetrant can get into any surface faults.
- 2. Penetrant must remain on the surface long enough to completely fill any existing fault. This is called the dwell time and it depends upon:
 - a) The size of the anticipated fault
 - b) The temperature of the part being inspected
- 3. Allow the appropriate dwell time, then wash the penetrant off the surface, taking care to not wash it out of any possible faults.

3 types of penetrants:		
Oilbase(with additives)	- with a fluorescent dye and an emulsifier added, to make the penetrant removable with a hot water bath.	
Oil base	- does not contain the emulsifier, so a separate emulsifier must be used.	
Solvent- removable penetrant	-not removable with water, must be cleaned from the surface with a solvent. Solvent-removable penetrant can seep into smaller faults than the other two types.	

- 4. After the penetrant has been removed from the surface, cover the area being inspected with a developer that acts as a blotter to draw some of the penetrant from hidden flaws. This developer may be:
 - a) A dry powder
 - b) A quick-drying spray that leaves a white chalky surface.
- If the dye is fluorescent, inspect the part with an ultraviolet, or black light. Any penetrant drawn from a fault shows up as a bright line, usually yellow-green, against a dark background.
- 6. If the dye is visible under ordinary light, a fault will show up as a highly visible red mark on the white background.
- 7. As soon as the inspection is completed, remove all traces of the inspection materials, clean and dry the surface.

12.4 Magnetic Particle Inspection

Surface and subsurface faults in a ferromagnetic part can be detected with magnetic particle inspection.

- Magnetize the part to be inspected Any flaw or fault within the component interrupts the magnetic lines of flux and forms a north and south pole.
- 2. Cover the area being inspected with very fine iron oxide particles.
- 3. The iron oxide is attracted to the magnetic poles where it forms a visible indication of the fault.
- 4. There are two ways of magnetizing a part. Overhaul manuals specify the way a part must be magnetized and the amount of current to be used tor the magnetization:

Circular magnetization- by passing DC through the part.	 Lines of magnetic flux encircle the part at right angles to the flow of current. Used for detecting faults that are parallel to the length of the part.
Longitudinal magnetization- by holding the part inside a coilof wire carrying DC.	 Lines of flux extend lengthwise through the part at right angles to the coil. Used tor detecting faults that are perpendicular to the length of the part.

- The iron oxide used to detect the fault contains a fluorescent dye. It may be applied as a dry powder, or as a suspension in a light oil such as kerosine.
- 6. The powder is dusted over the part, or the suspension is flowed over the surface being inspected. The oxide particles that are attracted to the poles created by the fault show up as a green mark when viewed under a black light.
- 7. Two types of magnetic particle inspection:
 - Continuous: the magnetizing current flows all the time the part is being inspected.
 - Residual: the part is magnetized and removed from the magnetic field, then inspected.

- 8. After inspection is completed, thoroughly demagnetize the part, in either of two ways:
 - a) Place the part in an AC magnetic field and slowly remove it from the field.
 - b) Place the part in a magnetic field made by pulses of DC of reversing polarity that is programmed to decrease its intensity.

- The *reversing polarity of the field* causes the magnetic domains within the material to continually change their orientation.

- The *decreasing field strength* allows them to remain in a disoriented condition.

12.5 EddyCurrent Inspection

Eddy current inspection checks for faults inside a metal by detecting a change in its conductivity caused by the presence of a fault. This method is especially suited for detecting intergranular corrosion.

How it works

A test probe containing an AC excited coil induces an eddy current into the material being tested.

- 1. Excite the coil with the proper frequency of AC.
- 2. Place the probe on the surface being inspected so it can induce a changing magnetic field in the metal.
- 3. The changing magnetic field induces eddy currents in the metal. The amount of current is determined by four things:
 - a) the conductivity of the metal which is a function of its alloy type, grain size, degree of heat treatment, and tensile strength.
 - b) the permeability of the metal.
 - c) the mass of the material.
 - d) the presence of any faults or voids.

What it is suited for

- 1. Identifying metals by comparison of their alloy type, degree of heat treatment, and tensile strength.
- Detection of cracks or hidden faults. This is an ideal way to check aircraft wheels for cracks in the bead seat area. These cracks close up when the stress is off the wheel and are almost impossible to detect visually, but show up with eddy current inspection.

Method

- 1. Place the test probe on a piece of metal (known to be good) of the type being inspected, and zero the indicator.
- 2. Place the probe on the metal being inspected.
 - If there are no internal faults, the indicator will again zero.

- If there are any faults within the metal, a different amount of current will be induced and the indicator will show the difference.

Detect ion of corro sion

The mass of sound material changes when corrosion is present, either internally or on the opposite side of a skin being inspected.

- 1. Hold the eddy current probe against a part of the skin that is known to be free of corrosion and zero the meter.
- 2. Move the probe over the area being inspected. If corrosion is present, the meter will move off zero.
- To inspect for corrosion around fastener holes, insert the small probe into a hole known to be free of corrosion and zero the indicator. When the probe is inserted into a hole where there is corrosion, the indicator will move off zero.

12.6 Ultrasonic Inspection

Ultrasonic waves are vibrations at frequencies between about 200 kilohertz (200,000 hertz) and 25 megahertz (25,000,000 hertz). In this frequency range, these waves are not perceptible to the human ear, but in all other ways they behave the same as vibrations we can hear.

- 1. A piezoelectric crystal transducer excited at the proper frequency of AC is held against the structure being inspected.
- The crystal vibrates and sends pulses of energy into the structure. The pulses travel until they reach the back surface of the material or until they strike a fault; then they reflect back to the transducer.
- 3. A cathode ray tube (CRT) with a horizontal base line is used as the indicator. The pulse entering the test specimen produces a pip along the base line representing the front surface, and a second pip representing the back surface.
- 4. Any fault within the material reflects some of the energy before it reaches the back surface and forms a third pip between the other two.

12.7 Radiography

Radiographic inspection is useful for checking the inside of an aircraft structure, as it does not require major disassembly. It is not recommended as an exploratory type of inspection, but is most appropriate for examining an area for a type of damage with known characteristics. There are two

types of radiographic inspection: X-rays and gamma rays.

X-Rays

X-rays are a form of high-energy, short-wavelength, electromagnetic radiation.

- 1. An electron is emitted from the cathode in an X-ray tube and accelerated to a high speed. When this electron strikes a target containing many electrons, it collides and some of its energy is converted into X-rays.
- Because X-rays have such high frequency they are able to pass through many materials that are opaque to visible light. As they pass through, they are absorbed in an amount proportional to the density of the material.

- 3. After passing through a material, the X-rays still have enough energy to expose a piece of photographic film.
- 4. The amount of current used to drive the electrons from the cathode determines the intensity of the X-ray beam and its ability to expose the film.
- 5. The voltage supplied to the anode of the X-ray tube determines the amount of energy the beam contains. The higher the voltage, the more energy, and the deeper the X-rays will penetrate the material being inspected.
- 6. Low-powered X-rays are called soft X-rays, and those that are produced by high voltage are called hard X-rays.
- 7. Soft X-rays are used to inspect for corrosion.

Gamma Rays

Gamma rays are composed of high-energy photons emitted by the nucleus of certainchemical isotopes such as those of Cobalt, Cesium, Iridium, and Thulium that are in the process of disintegration.

- 1. Unlike X-rays, gamma rays cannot be shut Off or controlled; therefore the source of these rays must be kept in a radiation-proof container shielded with lead.
- 2. When gamma rays are needed for an inspection, the equipment is set up and the active isotopes are exposed.

Inspection- Steps

- 1. The penetrating energy of X-rays and gamma rays passing through the material being inspected exposes a sheet of photographic film or causes a fluorescent screen to glow.
- 2. Discontinuities or faults within the material alter its density and thus the amount of radiation allowed to pass. The more dense the material, the less radiation passes through, and the less the film is exposed. Areas of low penetration appear on the film as light areas.
- 3. After a sheet of film is exposed to the radiation, it is developed and fixed as with any other photographic film, andits indication is interpreted by an experienced inspector. Damage and faults are detected by comparing the Image on the developed film with the indication of a sound structure.

Con siderations

1. Radiographic inspection:

-is more costly,

- requires more elaborate equipment, and

- requires more safety considerations than other types of nondestructive inspection, but

-it can be used to inspect the inside of complex assemblies without disassembling them.

- The factors of radiographic exposure are so interdependent that it is necessary to consider all of them for any particular inspection. These factors include, but are not limited to:
 - · Material thickness and density
 - · Shape and size of the object
 - Type of defect to be detected
 - · Characteristics of X-ray machine used
 - The exposure distance
 - The exposureangle
 - Film characteristics
 - Type of intensifying screen, if one is used

Safety

Radiation from X-rays and radioisotope sources produce changes in living tissue when they pass through it. Personnel must keep outside the high energy beam at all times.

- 1. When radiation strikes the molecules of the body, the effect may be no more than to dislodge a few electrons; however, an excess of these changes can cause irreparable harm.
- The degree of damage depends on which body cells have been changed. This is determined by the amount of radiation received and by the percentage of the total body exposed.
- 3. Protection for working with radiation equipment:

- wear a radiation-monitor film badge, which is developed at the end of a given period to determine the amount of radiation absorbed

-have periodic blood-count tests.

Section 13: Aircraft Control Systems

13.1 Types of Control Systems Page 259

13.2 Control Cables Page 260

13.3 Control Cable Terminals Page 261

13.4 Turnbudes Page 262

13.5 Control Cable Tension Page 264

Ι

13.1 Types of Control Systems

Torque Tubes

The control in the cockpit is connected to the control surface with a hollow aluminum alloy torque tube. Rotation of the tube transmits a torque force to the surface. Wing flaps are often *moved* with torque tubes.

Push•Pull Rods

Elevators, some ailerons and flaps, and helicopter rotor controls are operated by rigid push-pull rods. These are hollow aluminum alloy tubes with rod-end bearings or clevises at the ends.

Push-pull rod assembly

- Install rod-end bearings with the flanged side of the bearing housing next to the structure to which it is attached.
- Rod-end bearings have a "witness hole" to indicate when the rod is screwed in far enough to supply full strength. If the rod is screwed in sufficiently far, the threads will cover the hole.

Proper rod-end bearing attachment

13. 2 Control Cables

Extra flexible

Flexible

Non-flexible Non-flexible

Type of Cable	Strands/ Wires	Material	Application
Extra flexible	7 x 19	Stainless steel	Cables that pass over pulleys
		Galv. carbon steel	
Flexible	7x7	Stainless steel	Straight cable runs
		Galv. carbon steel	Slight change in direction allowed
Non-flexible	1 x 19	Stainless steel	Straight cable runs
	1 x 7	Galv. carbon steel	No change in direction allowed

13.3 Control Cable Terminals

Swaged terminals are made of stainless steel and have a tubular end into which the cable fits. The cable is slipped into the tube and the assembly is swaged, forcing the metal of the tube into the cable so it grips the strands of wire. A "go-no go" gage or a micrometer caliper is used to determine when the terminal has been properly swaged. The swaging process should reduce the diameter of the tubular end to a dimension specified by the terminal manufacturer. When properly swaged, the cable will break before it pulls out of the terminal.

Nicopress sleeves are installed on cables in some lighter aircraft. A properly installed Nicopress terminal provides the full strength of the cable.

- Slip a copper Nlcopress sleeve over the cable and loop the free end around a bushing or a thimble eye and slip it into the opposite side of the sleeve.
- Make three crimps with a special Nicopress tool. The first crimp is in the center of the sleeve, the next is at the end nearest the eye, and the last crimp is near the opposite end.
- Use a "go-no go" gage to determine that the sleeve has been sufficiently crimped.

AN663 Double shank ball end

AN664 Single shank ball end

<0110010100110111

AN666 Threaded cable terminal

AN667 Fork end cable terminal

AN668 Eye end cable terminal

Nicopress sleeve for terminating an aircraft control cable. The lower illustration shows the proper sequence for crimping the sleeve onto the cable.

13.4 Turnbuckles

- Control cable tension is adjusted with turnbuckles that are installed in at least one cable in each run.
- A turnbuckle consists of a bronze barrel and terminals that screw into each end. The threads in one end of the barrel are left-hand and those in the other end are right-hand. The end having the left-hand threads is normally identified with a groove around its end.
- A turnbuckle will produce its full strength only when the threads on the terminal are sufficiently engaged. No more than three threads on the terminals should be exposed. If the cable tension is too high when more than three threads are exposed, a longer barrel should be used.

Tumbuckle Safetying

It is important that turnbuckles be properly safetied to prevent them from becoming unscrewed and changing the control cable tension.

Double wrap (spiral)

Double wrap

Single wrap (spiral)

Single wrap

Methods of safetying turnbuckles

Turnbuckle Safetying Guide			
Cable size	Type of wrap	Diameter of safety wire	Material (annealed)
1/16	Single	0.040	Copper, brass
3/32	Single	0.040	Copper, brass
1/8	Single	0.040	Stainless steel, monel and K monel
1/8	Double	0.040	Copper, brass
1/8	Single	0.057 min.	Copper, brass
5/32 and greater	Double	0.040	Stainless steel, monel and K monel
5/32 and greater	Single	0.057 min.	Stainless steel, monel and K monel
5/32 and greater	Double	0.0512	Copper, brass

Clip-Locking Tumbuckles

There is a slot in the threads of the terminal and one in each end of the barrel.

- 1. After the cable tension has been adjusted, align the slots in the turnbuckl body and the swaged terminal.
- 2. Insert the straight end of the locking clips into the slots in each end of the barrel.
- 3. Insert the hooked ends of the clips into the hole in the side of the barrel and press them in until the ends of the hook seat on the edge of the hole.

13.5 Control Cable Tension

- It is important that control cable tension be within the range specified in the aircraft maintenance manual. If the tension is too high, the controls will be stiff and the pulleys will wear excessively. If the tension is too low, there is danger of the cable getting out of the pulley groove and becoming fouled.
- Large all-metal aircraft contract as they cold soak at high altitude where the air is extremely cold. The control cables do not change their dimensions as much as the airframe does, so automatic tension adjusters are used to maintain a constant cable tension as temperature changes.
- 3. Small aircraft do not have automatic adjusters but rely on the cables being properly adjusted to the proper tension determined by the aircraft manufacturer.

To find the correct rigging load for a 1/8 inch7x19 cable at 90°F:

- 1. Follow the vertical line for 90°F upward until it intersects the curve for 1/8 inch 7x19 cable (the third curve up).
- 2. From this point of intersection, draw a horizontal line to the right to the Rigging Load scale. This shows that the correct rigging load for this temperature is 75 pounds.

. .

>_

iil

CJ)

1

BI

Cable tension is measured with a tensiometer:

- 1. Install the correct riser for the size of cable being checked, and clamp the tensiometer overthe cable.
- 2. Use the chart furnished with the tensiometer to relate the indication on the tensiometer scale to the diameter of the cable, in order to find the cable tension in pounds.

Section 14: Aircraft Fluid Lines

- 14.1 Rigid Fluid Lines Page 269
- 14.2 Flexible Fluid Lines Page271
- 14.3 Installation of Flexible Hose Page273
- 14.4 Fluid Line Identification Page 274

Fuel, hydraulic fluid, compressed air, lubricating oil, and other fluids are carried in an aircraft and all must be routed through the proper size and type of fluid line. There are two basic types of fluid lines: rigid and flexible.

14.1 Rigid Fluid Lines

Materials recommended for rigid fluid lines

Application	Material
Low pressure	1100- and 3003-half hard aluminum alloy
High pressure	2024-T and 5052-0 aluminum alloy
Oxygen systems	Corrosion resistant steel
	Fittings are brazed or silver soldered to lines

Rigid fluid lines

- are measured by their outside diameter in increments of 1/16-inch. For example, number 8 tubing has an outside diameter of 8/16- or 1/2-inch.

- are connected to fittings with either a flared or a flareless fitting. Flared fittings have a flare angle of 37° ; they must not be mixed with automotive fittings which have a flare angle of 45° .

When a piece of tubing is flared, the minimum diameter of the outside of the flare should be no less than the inside diameter of the flare in the sleeve, and the outside diameter should be no greater than theoutside of the sleeve.

• Tubing made of 5052-0 and 6061-T aluminumalloy in sizes between 1/8- and 3/8-inch may be double flared.

MS flareless fittings- popular for use in high-pressure hydraulic and pneumatic lines

To assemble an **MS** flareless fitting:

- 1. Slide the nut and sleeve onto the tube.
- 2. Place the tube into a presetting tool and tighten the nut as specified by the tubing manufacturer. (The pressure produced by the nut distorts the sleeve so that it bites into the tube.)
- 3. Remove the tube from the presetting tool and screw it onto the fitting.
- 4. Tighten the nut finger tight, then turn it with a wrench tor 1/6- to 1/3-turn (one hex to two hexes).
- 5. Do not overtighten the fitting as it may be damaged and the joint will leak.

14.2 Flexible Fluid Lines

- Flexible fluid lines must be able to carry all of the volume of fluid without an excessive pressure drop. They must withstand the pressure and the vibration they will encounter.
- When a particular hose is specified in an aircraft parts list or service manual, only that hose or an approved substitute may be used when the hose is replaced.
- The size of a flexible hose is approximately its inside diameter in 1/16-inch increments. This dimension refers to the outside diameter of a rigid tube that has equivalent flow characteristics. For example, a -8 hose has flow characteristics equivalent to the same length of -8, or 1/2-inch (8/16) rigid tubing.
- Flexible fluid lines have a linear stripe, called a lay line, running along their length. Its purpose is to help prevent twisting the hose during installation. If this line spirals around the hose, the hose has been twisted.

Type/Name	Description and Identification	Approved for use/ Suitability
Low-pressure hose MIL-H-5593	 Synthetic rubber inner liner, a cotton braid, ribbed syntheticrubber outer cover. Broken yellow lay line, letters "LP," manufac - lurer's code/date marking 	 Approved for pressures up to 300 psi Primarily used in instrumentinstallations.
Medium-pressure hose MII -H-8794	 Seamless synthetic rubber inner liner, synthetic-rubber- impregnated cotton braid reinforcement, steel-wire braid reinforcement. Encasedin a rough synthetic-rubber- impregnated cotton braid 	• Suitable for carrying fluids under pressure of up to 1,500 psi.

Types of FlexIble Fluid Lines

(continued)

Type/Name	Description and Identification	Approved for use/ Suitability
High-pressure hose MIL-H-8788	 Seamless synthetic rubber inner tube, either two or three carbon-steel wire- braid reinforcements. Smooth synthetic rubber cover 	• Suitable for operating with pressures up to 3,000 psi.
Extra-High- Pressure Hose	 Reinforced with layers of spiral wound stainless steelwire Encased in a special synthetic rubber outer layer. 	 Suitable for use with pressures between 3,000 and 6,000 psi and temperatures up to 400°F.
Teflon Hose Tetrafluoethylene, TFE	Chemically resistant TFE inner liner, braided stainless steel outer covering.	• Unaffectedby any fuel, petroleum or synthetic base oils, alcohol, coolants, or solvents commonly used in aircraftand it retains these ch racteristics even at elevated temperatures.

14.3 Installation of Flexible Hose

Flexible hose should be approximately 5% to 8% longer than the distance between the fittings. This slack allows for contraction as the line expands its diameter and shortens its length when pressurized.

Flexible hose should be installed with no twists.The lay line spirals around the hose if it is twisted.

Flexible hose should be installed on a movable actuator in such a way that the hose is not crimped in any position of the actuator.

Elbow fittings should be used to keep flexible hose from having to be bent at a

sharp angle.

Improper, and proper installation of flexible hose

14.4 Fluid Line Identification

- Fluid-carrying lines in an aircraft are identified with a series of colored and coded bands.
- One or two colors identify the fluid in the lines, and the name of the fluid is written in the colored area.
- To aid color-blind technicians, a coded stripe also identifies the fluid.

Fluid Line IdentHlcatIon

Fluid Line Identification (continued)

Section 15: Oxygen System Servicing

15.1 Oxygen System Servicing Page 279

15.1 Oxygen System Servicing

- 1. Be sure to use **no** petroleum lubricants on oxygen system components.
- 2. Service aircraft oxygen systems only with oxygen approved for use in aircraft.
- 3. When servicing an oxygen system from a cascade-type servicing cart, charge the system from the cylinder having the lowest pressure first. When the pressure stabilizes, record the pressure on the cylinder, shut it off and open the valve on the cylinder having the next lowest pressure. Continue this process until you have the desired pressure in the system. Use the chart below to determine the final charging pressure, based on the ambient temperature.
- Do not allow installed oxygen cylinders to become completely empty. When there is no oxygen in a cylinder, air containing water vapor can enter.

Filling Pressure for 1,850 PSI Oxygen Cylinders

Ambient temperature and the heat of compression affect the pressure of oxygen in a cylinder. To end up with 1,850 psi in the cylinder after the oxygen has cooled from the filling process, the following filling pressures should be used:

Ambient	Filling
Temperature	Pressure
(OF)	(psi)
0	1,650
10	1,700
20	1,725
30	1,775
40	1,825
50	1,875
60	1,925
70	1,975
80	2,000
90	2,050
100	2,100
110	2,150
120	2,200
130	2,250

Section 16: Aircraft Weight and Balance

16.1	Locating the Center of Gravity P	age283
16.2	Datum Forward of the Airplane - Nose Wheel Landing Gea	r Page284
16.3	Datum Aft of the Main Wheels- Nose Wheel Landing Gear	Page285
16.4	Datum Forward of the Main Wheels- Tail Wheel Landing Gear	Page286
16.5	Datum Aft of the Main Wheels- Tail Wheel Landing Gear	Page287
16.6	6 Location of CG with Respect to the Mean Aerodynamic Chord	Page288

16.1 Locaingthe Center of Gravity

- Position the airplane on the scales with the parking brake off.
- Place chocks around the wheels to keep the airplane from rolling.
- Subtract the weight of the chocks (called tare weight) from the scale reading to determine the net weight at each weighing point.

Figure 16.1. Thedatum is at the engine firewall.

- Determine the arm of each weighing point by measuring its distance from the datum.
- Find the moment of each weighing point by multiplying its net weight by its arm.

Nose wheel net weight = 340 pounds Arm of the nose wheel = -32 inches Moment of the nose wheel= -10,880pound-inches

Main wheel net weight= 1,666 pounds Arm of the main wheels = 46 inches Moment of the main wheels = 76,636 pound-inches

Total weight= 2,006pounds Total moment= 65,756 pound-inches Find the CG by adding the weight and moment of each weighing point to find the total weight and total moment. Then divide the total moment by the total weight to find the CG relativeto the weighing points.

CG= <u>Total Moment</u> Total Weight 65,756 = <u>2.006</u> = 32.8 inches aft of the datum

The CG is 32.8 inches aft of the datum or 13.2 inches ahead of the mainwheel weighing points.

16.2 Datum Forward of the Airplane- Nose Wheel Landing Gear

In Figure 16.2, the alum is considered to be 100 inches ahead of the leading edge of the wing. The distance (D) between the main-wheel weighing points and the datum is +128 inches. The weight of the nose wheel (F) is 340 pounds, the distance (L) between the main wheel and the nose-wheel weighing points is 78.0 inches, and the total weight (W) is 2,006 pounds.

Figure 16.2. The datum is ahead of the airplane.

To locate the CG of an airplane relative to the datum that is 100 inches ahead of the wing leading edge, use the formula:

$$cG = \underbrace{O - (F; L)}_{= 128} \underbrace{O - (340x 78)}_{2,006}$$

= 114.8 inches aft of datum

The CG is 114.8 inches aft of the datum, which is 13.2 inches ahead of the main-wheel weighing points. This proves that the location of the datum has no effect on the location of the CG, as long as all measurements are made from the same location.

16.3 DatumAft of the Main Wheels- Nose Wheel Landing Gear

In Figure 16.3, the datum is at the trailing edge of the wing at the wing root. The distance (D) between the main-wheel weighing points and the datum is +75 inches. The weight of the nose wheel (F) is 340 pounds, the distance (L) between the main wheel and the nose wheel weighing points is 78.0 inches, and the total weight (W) is 2,006 pounds.

Figure 16.3. The datum is aft of the main wheels at the intersection of the wing trailing edge and the fuselage.
CG = - (D + F; L)

$$= -(75_{+} \frac{340 \times 78)}{2,006}$$

= - 88.2 inches ahead of the datum

The CG is 88.2 inches ahead of the datum, which is 13.2 inches ahead of the main-wheel weighing points.

16.4 Datum Forward of the Main Wheels- Tail Wheel Landing Gear

In Figure 16.4, the datum is at the leading edge of the wing at the wing root. The distance (D) between the main-wheel weighing points and the datum is +7.5 inches. The weight of the tail wheel (R) is 67 pounds, the distance (L) between the main wheel and the tail-wheel weighing points is 222.0 inches, and the total weight (W) is 1,218 pounds.

Figure 16.4. Thedatum is the leading edge of the wing at the wing root.

CG = D + (RL)

=7.5+(⁶⁷ T.2²²²)

= 19 . 7 inches aft of the datum

The CG is 19.7 inches behind the datum, which places it 12.2 inches behind the main-wheel weighing points.

16.5 Datum Aft of the Main Wheels- Tail Wheel Landing Gear

In Figure 16.5, the datum is at the trailing edge of the wing at the wing root. The distance (D) between the main-wheel weighing points and the datum is 80 inches. The weight of the tail wheel (A) is 67 pounds, the distance (L) between the main wheel and the tail-wheel weighing points is 222.0 inches, and the total weight (W) is 1,218 pounds.

Figure 15.5. Thedatum is the trailing edge of the wing at the wing root.

$$CG = -D + (\underline{)})$$

$$=$$
 80 (3222) 1.218

= 67.8 inches ahead of the datum

The CG is 67.8 inches ahead of the datum, which is 80 inches behind the main-wheel weighing points. The CG is 12.2 inches behind the main-wheel weighing point.

16.6Location of CG with Respect to the Mean Aerodynamic Chord

Knowing the location of the CG relative to the datum is important to the technician, because it is easy to locate physically. But the pilot and flight engineer are more concerned with location of the CG relative to the aerodynamic characteristics of the wing. The reference for this location is in percentage of the wingchord.

The chord of a tapered wing airplane is not easy to determine; therefore the mean aerodynamic chord (MAC) is used, and the allowable CG range is expressed as percentages of the MAC.

The MAC is the chord of an imaginary airfoil that has all of the aerodynamic characteristics of the actual airfoil. It can also be thought of as the chord drawn through the geographic center of the plan area of the wing. (see Figure 16.6)

For example, the aircraft weight and balance data states that the leading edge of MAC (LEMAC) is at station 1022, and the trailing edge of MAC (TEMAC) is at station 1198. A weight and balance computation determines that the CG is located at station 1070, the location expressed in percentage of MAC is found using this formula:

CG in %MAC Distance aft of LEMAC x 100 MAC $= \frac{48 \times 100}{176}$ = 27.3%MAC

The CG of the airplane is located at 27.3% MAC.

Figure 16.6. The MAC is the chord drawn through the geographic center of the plan area of the wing.

Section 17: Composites

17.1 Resin Systems- Typical Properties Page293 **17.2** Resin Mix Ratios Page 294 **17.3** Fiber/Resin Ratio Formulas Page295 **17.4** ReinfoingFibers Page296 **17,5** Textile and Fiber Terminology Page297 **17.6** Yarn Part Numbering Systems Page 298 **17.7** Fabric Weave Styles Page299 17,8 Common Weave Style Numbers and Features Page 301 **17.9** Ply OrientatinConventions Page 302 **17.10** Damage Removal- Scarfing and Stepping Page 302 **17.11** Core Materials Page 304 17.12 BleederSchedules Page305

17.1 Resin Systems-Typical Properties

Each resin system has its own combination of features or properties, which

determine their suitability for a given purpose. e.g. maximum service temperature, smoke properties, adhesive properties, etc. The following is a list of the major resin families and general description of their properties.

Polyester resin	Cured by <i>polymerization</i> Environmentally resistant Inexpensive Poor adhesive properties High styrene emissions Poor smoke properties
Vinyl ester resin	Cured by <i>polymerization</i> Modified polyesterresin Better adhesive properties than polyester High styrene emissions Poor smoke properties
Epoxy resin	Cured by <i>cross-linking</i> Excellent strength and adhesive properties Good environmental resistance Wide variety of formulations and properties Most common in aerospace applications Poor smoke properties
Phenolic resin	Cured by <i>cross-linking</i> Good chemical and electrical properties Poor adhesive properties Good smoke properties Fairly brittle
Bismaleimide resin	Cured by <i>cross-linking</i> Often referred to as BMI Good hoVwet performance High service temperature Process similar to epoxy

(continued)

Cyanate ester resin	Cured by <i>cross-linking</i> High service temperature (after post-cure) Minimal micro cracking Expensive
Polyimide resin	Cured by <i>cross-linking</i> High service temperature Good smoke properties Difficult to process Expensive

Polymerization begins in polyester and vinyl ester resins at the time of manufacture. An inhibitor is added to the material to keep it in a liquid state until it is ready for use. When the user adds a small quantity of an initiator (catalyst) such as MEKP, it counteracts the effect of the inhibitor and allows the resin to cure and become solid.

Cross-linking occurs in most other thermoset resin systems. It is a one-time chemical reaction in which liquid resin molecules (component A) form links to hardener molecules (component 8). As these links form, the resin gels, cures, and ultimately becomes a solid.

WARNING: These curing processes generate heat. If sufficient amounts are left in a container for too long there is a substantial risk of an uncontrolled exothermic reaction. Such reactions can generate large amounts of toxic smoke or possibly start a fire. Always consult the manufacturers data sheet and material safety data sheet (MSDS) for details.

17.2 Resin Mix Ratios

In order for any resin system to develop its full strength after it is cured it must first be mixed properly. The amount of hardener that should be added to a resin system is usually measured by weight, not volume, and is expressed as a ratio (e.g. 100:30). Assuming the unit of measurement is

grams, this means to 100 grams of resin, add 30 grams of hardener for a total of 130 grams of mixed material.

For example, if a total of 210 g rams of mixed resin is needed and the mix ratio is 100:42, the amount of components A and B to be weighed out may be determined using the following formula:

Therefore, 148 grams of component A added to 62 grams of component B will result in 210 grams of mixed resin with the proper mix ratio.

The importance of understanding mix ratios cannot be stressed enough. Most high performance resin systems will tolerate mix ratio errors up to 3 percent. Errors beyond 3 percent may dramatically reduce a resin's ability to perform properly in service.

17.3 Fiber/ Resin Ratio Formulas

Optimum strengths are derived from composite materials when fiber reinforcements (glass, aramid, carbon, etc.) are combined with a particular amount of matrix material (resin). Too much resin makes the laminate heavier and stiffer than it should be; not enough resin causes its physical properties to suffer tremendously. When designing composite parts engineers often use "fiber volume" as a means to express how much fiber and resin make up a component. This works fine for engineering, but is of little use to mechanics conducting repairs in the field.

Since most mechanics have access to a scale, a more practical method is to use the relative weight of the fiber and its associated resin. The relationship of the weight of the fibers to the weight of the resin can then be expressed as a ratio. For example, a 60:40 fiber/resin ratio indicates that 60% of the weight of the laminate is attributed to the reinforcing fibers and 40% is attributed to the resin. Understanding the relationship between fiber and resin weights can aid in developing optimum strength properties in wet lay-up repairs. Below are common fiber/resin ratio ranges for various fiber types.

	Fiberglass	Carbon/Graphite	Aramld
Resin lean	70:30	48:52	39:61
Resin rich	60:40	42:58	33:67

17.4 Reinforcing Fibers

The most common advanced composite fibers used in the aerospace industry today are carbon and graphite fibers, fiberglass, and aramid, or Kevlar" fiber. Each of these has certain properties that make the material unique and particularly well suited for certain applications.

Carbon/Graphite	High modulus (stiffness) Broad range of strength and modulus combinations Electrically conductive
Aramid (Kevlar"')	Light weight High tensile strength Impact/ abrasion resistant
Fiberglass	Excellent physical properties Readily available Inexpensive Variety of chemistries available for different purposes

17.5 Textile and FiberTerminology

Fliaments

The smallest element of composite fibers, typically 3 to 25 microns in diameter depending on the type of fiber.

Strands

An intermediate step used in the production of fiberglass yarns only. Filaments are twisted into strands, which are then twisted into yarns.

Ya ms/ tow s

Bundles of filaments numbering from 25 to 24,000. Yams are twisted to aid in the manufacture of woven cloth (see 17.6 "Yam Part Numbering Systems"). Tows are often laid flat and parallel to manufacture carbon, aramid, or fiberglass unidirectional tape.

Warp yams

Yarns running the length of a roll of fabric. Always used when referencing ply orientation.

Fill yarns

Transverse yarns on a roll of fabric.

Sel11age edge

Stitching along the long edge of a rollof fabric to keep it from fraying.

Warp face

Harness satin weaves only. The face of a fabric on which one sees primarily warp yarns.

Fill face

Harness satin weaves only. The face of a fabric on which one sees primarily fill yarns.

17.6 Yarn Part Numbering Systems

Composite structures rely on reinforcing fibers to carry the majority of the loads imposed on them. In structures made from woven materials, the fibers are usually gathered into yarns. Since the size, construction, and number of the yarns is critical to the structure's ability to conduct a load properly, it is important to understand how these yarns are described. Each of the major fiber types-fiberglass, carbon, and aramid (Kevla) - have their own part numbering system for yarns.

Carbon

A number suffixed by the letter "K" (thousand) is used to indicate how many thousands of filaments make up the yam. For instance, a 6K yarn is made up of six thousand filaments.

Aramid (Ke11la r8J

Aramid yarns are described by their denier weight, which appears as a number suffixed by "de." The denier weight is the weight, in grams, of nine thousand meters of the yarn, the lower the denier, the finer the yam. For example, a yarn designated as 1140 de indicates that nine thousand meters of that yarn weighs 1,140 grams.

Fibergla ss

Given the wide variety of fiberglass materials produced, a more exact system for identifying yarns is required. An example of a fiberglass yarn part number is given below followed by descriptions of each of its components. For example, ECG 150 2/3

First letter-Characterizes thechemical composition of the glass, e.g. Eglass (electrical), C-glass (chemical resistant), S-glass (structural), etc.

Second letter-Describes thefilament type. "C" indicates a continuous filament as opposed to a staple filament (S), or a texturized continuous filament (T).

Third letter-A letter code representing the individual filament diameter. "G" indicates an individual filament diameter range of .00035 to .000399 inches. Contact fiberglass manufacturer for additional letter codes.

First number-Thenumber of yards, divided by one hundred, required to net one pound of the basic yarn strand. In the example, multiplying 150 by one hundred equals 15,000 yards of strand in one pound.

Second number-The"2/3" shows the number of basic strands in the yarn. The first digit represents the original number of twisted strands. The second digit shows how many of these are twisted together to make one yarn. To find the total number of strands in a yarn, multiply the two digits together (a zero is always multiplied as a one).

17.7 Fabric Weave Styles

Plain weave

Thesimplest, most basic of the weave styles. Warp and fillyarns are interlaced over and under each other in an alternating pattern. These fabrics are stable and lightweight, but typically have poor drape properties.

Plain weave

Four-harness

Harness satin weaves

A warp or fill yarn "floats" over a number of yarn intersections before interlacing under just one yarn. This creates the appearance of all the yarns on one side of the fabric "traveling" in a single direction, and the yarns on the opposite side "traveling" 90 degrees out (see 17.4, "warp face" and "fill face"). Harness satins have excellent drape and are characterized by the number of yarns a yarn "floats" over, plus the yarn it goes under. Common weave styles include fourharness satin (over three yarns, under one), five-harness satin (over four varns, under one), and eight-harness satin (over seven yarns, under one).

Twill weave

These relatively stable fabrics offer increased drape properties over plain weaves. The weave pattern is characterized by the appearance of a diagonal rib caused by warp yarns floating over two fill yarns (2 x 2 twill) and then, under two. A 4x4 twill has a similar appearance and better drape properties.

Five-harness

Eight-harness satin

Twill weave

17.8 Common Weave Style Numbers and Features

It is important to remember that the weave style number is meaningless without knowing the fiber type. For instance, 120 style aramid is in no way similar to 120 style fiberglass. The aramid is a plain weave and the fiberglass is a four harness satin.

Fiberglass	Characteristics
400	
120	4 harness satin - 3.1 oz 60 x 58
1581	8 harness satin - 8.7 oz 57 x 54
7500	plain weave - 9.3 oz 56 x 54
7781	8 harness satin - 8.7 oz 16 x 14
Aramid	Characteristics
Style number•	Weave style - Weight - Yarn count (W x F)
348 (181)	8 harness satin - 4.9 oz 50 x 50
350 (120)	plain weave - 1.7 oz 34 x 34
352 (281)	plain weave - 5.0 oz 17 x 17
353 (285)	4 harness satin - 5.0 oz 17 x 17
Carbon	Characteristics
Style number	Weave style - Weight - Yarn count (W x F)
130	plain weave - 3.74 oz 24 x 24
282	plain weave - 5.8 oz 12 x 12
286	4 harness satin - 5.8 oz 12 x 12
433	5 harness satin - 8.4 oz 18 x 18
584	8 harness satin - 11.0 oz 24 x 24
IM7 Graphite	
SGP193-P	plain weave - 5.7 oz 11 x 11
SGP203-CS	4 harness satin - 6.0 oz 12 x 12
SGP370-8H	8 harness satin - 11.0 oz 21 x 21

• Numbers in parentheses are older stylenumbers

17.9 Ply Orientation Conventions

Ply orientation convention symbols are used in manufacturers structural repair manuals to coordinate the drawing of the component to the ply tables, which list ply orientations.

There are two types of convention symbols, clockwise and counterclockwise. The counter-clockwise warp clock is drawn from the manufacturer'sstandpoint where the plies are viewed from the inside looking out, toward the tool surface. The clockwise warp clock is drawn from the repair standpoint where the plies are viewed from the outside, or tool surface, looking in.

17.10 Damage Removal-Scarfing and Stepping

Once the damaged area of a laminate has been removed, ii must be prepared in such a way that allows the repair plies to conduct loads much like the original structure did. Like sheet metal repairs, composite repairs rarely restore a structure to 100% of its original strength, but poorly prepared areas can yield composite repairs that perform well below acceptable standards. Always consult the manufacturer's SAM or other acceptable data for repair specifics.

While scarfed, or taper-sanded repairs have been demonstrated to conduct loads more effectively, step-sanded repairs are still found in many aircraft SRMs. Usually, they are both expressed as a specific dimension per ply, e.g. scarf 1/2 inch per ply. On some newer aircraft taper sanding is expressed as a scarf ratio.

In a scarf ratio of 40:1 for example, the "1" represents the thickness of the laminate and the "40" represents the distance the scarf will cover, in this

case 40 times the thickness of the laminate.

17.111 Core Materials

Core materials for composite applications can generally be divided into two categories, foam core and honeycomb core. Foam core materials generally have good properties at a relatively low cost, they are easy to machine. and their closed cell construction offers excellent resistance to water and fluid ingress. While there are many foam chemistries, the three most common are Polvvinvlchloride (PVC). Polvurethane, and Polymethacrylimide (PMI). Available densities range from less than 2 pounds per cubic foot (pct) to 60 pct.

Honevcomb core is used extensively on modern aircraft due to its exceptional physical properties and light weight. Fabrics are used to make carbon and fiberglass honeycomb, while Nomex® and Kevlar ® cores are made from a pressed, paper-like form of the materials. The three most common core cell configura tions are: hex core (hexagonal.) for flat or nearly flat panels; 0.X. core (over-expanded) for simple curves; and flex-core for complex geometries. When honeycomb is specified, the following information needs tobeprovided:

- Material
- Cell shape (Hex-core, O.X. core, Flex-core, etc.)
- Cell size

Core illustrations courtesy of Hexcel

- Density
- Wall thickness and alloy (for aluminum core)

Cell sizes range from 1/16' to 1", with 1/8", 3/16", 1/4", with 3/8" being the most com-mon. Honeycomb densities range from 1.0 lb/113 to 55 lb/ft $^3\cdot$

17.12 BleederSchedules

Bleeder schedules are used in conjunction with vacuum bag processing to remove resin that is in excess of the desired fiber/resin ratio (see 17.3) and to remove air and volatiles from the resin system as it cures. There are many types of materials available to perform the various functions in a bleeder schedule, so the potential combinations are infinite. However, a typical bleeder schedule might contain the following elements:

- Release layer- Allows resin and gasses to pass through and releases from the cured part/repair.
- Bleeder material- Absorbent material to hold resin.
- Separator layer- Prevents resin from saturating breather materials. A separator may not be necessary depending on resin quantity and flow characteristics.
- Breather material Provides gas path for extraction of air and volatiles.
- Vacuum bag-Used with sealant tape to achieve vacuum.

Appendices

Appendix 1 Hydraulic Fittings Page 309 Appendix 2 Engines Page 313 Appendix 3 Aircraft Lead Acid Battery Theory Page 315 Appendix 4 Aircraft Tires Page 335

Appendix 1: Hydraulic Fittings

AN837 Bulkhead 45°

AN911 Male Straight

AN840 Straight Nipple

AN912 Pipe to Pipe Bushing

AN914 Male to Female 90°

AN842 90° Nipple

Male to Female 45°

AN844 45° Nipple

AN893 Female (§;]

AN916 Female 90°

> AN917 Female Tee

Straight AN894 Female Straight to Male 37°

Straight to Male

8]

AN910 Female Straight AN918 Female Cross

Appendix 1: /draulic Fittings

MS20913 Square Plug, replaces AN913 MS21921 Flareless Nut

MS21900

MS21922 Flareless Sleeve

37° Flare to Flareless

MS27769 Hex Plug, replaces AN932

MS21902 Flarelelss Union

NAS1564 Female 37° to Male 37°

Appendix 2: Engines

Fine- Wire Spark Plugs

Normal: Indicates short service time and correct heat range. Clean, regap and test before reinstalling.

Worn Out-Normal: Indicates normal service life, electrodes show normal erosion, ground electrodesabouthalf original thickness. Install new spark plugs.

Worn Out- Severe: Extensively eroded center and ground electrodes indicate abnormalenginepower operation or plugs long overdue for replacement. Install new sparkplugs.

Lead Fouled: Hard, cinder-like deposits from poor fuel vaporization, highT.E.L. content in fuel or engine operating too cold. Clean, regap, test and reinstall

Cart>on Fouled: Black, sooty deposits from excessive ground idling, idle mixture loo richor plugtype too cold. If heat rangeiscorrec1.clean. regap, test and reinstall.

011Fouled: Wet, oilv deposrts may be caused by broken or worn piston rings, excessive valve guide clearances, leaking impeller seal or engine still in break-in period. Repair engine as required . Clean , regap. test and reinstall plugs.

M ass ive Electrode P lugs

Normal: Indicates short service time and correct heat range. Clean, regap and lest before reinstalling.

Worn Out- Normal:

Indicates normal service life, electrodes show normal erosion, ground electrodes abou1half original thickness. Install new spark plugs.

Worn Out- Severe: Excessively eroded center and ground electrodes indicate abnormal engine power operation. Check fuel metering. Install new spark plugs.

lead Fouled: Hard, cinder-like deposits from poor fuelvaporiza1ion, highT.E.L content in fuel or engine operating too cold. Install new spark plugs.

Carbon Fouled: Black. sooty deposits from excessive ground idling, idle mixture too rich or plugtype too cold. If heat range is correct, clean, regap, test and reinstall.

Oil Fouled: We1, oily deposits may be caused by broken or wornpiston rings, excessive valve guide clearances, leaking impeller sealor engine still in break-in period. Repair engine as required. Clean, regap. test and reinstall plugs.

Covrtesy Champion Aviation Prodvcts

Spark Plug Color Identifier

Painted between spark plug hole and rocker bo,c.

Gray or unpainted.....Short reach spark plug Yellow....Long reach spark plug

Appendix 3: Aircraft Lead Acid Battery Theory

 $\label{eq:control} A dapted from ``Concorde Aircraft Battery Owner/Operator Manual.' courtesy Concorde Battery Corporation$

Page 317 Theory Precautions Page320 Activation of Dry Charged Batteries Page 321 Mixing of Electrolyte Page 322 Battery Testing Page 322 Charging Methods Page 324 Capacity Test Page 325 Battery State of Charge (S.O.C.) Page 326 Battery State of Health Page326 Cold Weather Operation Page 327 Ventilating Systems Page 328 Inspection and Service Page 328 Storage Page 329 Battery Terminology Page 329

Theory

Chemical Reactions

Achemical reaction takes place when a battery is being charged or discharged, as represented by the above equation.

On discharge, leaddioxide (PbO₂) of the positive electrode and sponge lead(Pb) of the negative electrode are bothconverted to lead sulfate (PbSO₄) freeing two electrons. On charge, the lead sulfate in the positive electrode is converted to lead dioxide (PbO₂) (with oxygen evolution on charge) and the lead sulfate in the negative electrode is converted to sponge lead (with hydrogen evolution on charge). The electrolyte, sulfuric acid (H₂SO₄), is an active component in the reaction at both electrodes.

When flooded (vented) batteries are on charge, the oxygen generated at the positive plates escapes from the cell. Concurrently, at the negative plates, hydrogen is generated from water and escapes from the cell. The overall result is the gassing of the cells and water loss. Therefore, flooded cells require periodic water replenishment.

When valve regulated Recombinant Gas (RG•) batteries are on charge, oxygen combines chemically with the lead at the negative plates in the presence of H_2SO_4 to form lead sulfate and water. This oxygen recombination suppresses the generation of hydrogen at the negative plates. Overall, there is no water loss during charging. A very small quantity of water may be lost as a result of self-discharge reactions; however, such loss is so small that no provision need be made for water replenishment. The battery cells have a pressure relief safety valve that may vent if the battery is overcharged.

NOTE: DO NOT remove the pressure relief valves on an AG® battery and **DO NOT** add water or electrolyte. The Recombinant Gas design eliminates the need to replenish water and electrolyte. Removing the pressure relief valve voids the warranty.

Battery Construction

Anaircraft storage battery consists of 6 or 12 lead acidcells connected in series. The opencircuit voltage of the 6-cell battery is approximately 12 volts, and the opencircuit voltage of the 12-cell battery is approximately 24 volts. Open circuit voltage is the voltage of the battery when ii is not connected to a load.

Cell Construction

The leadacidcell used in aircraft batteries consists of positive plates made of leaddioxide (Pb0_{2);} negative plates of pure spongy lead (Pb); and a liquid known as electrolyte, consisting of a mixture of sulfuric acid (H₂S0₄) and water (H₂0). The sulfuric acid and water are mixed so the solution has a specific gravity (S.G.) of 1.275 to 1.300 in a fully charged battery.

The specific gravity of a substance Is defined as the ratio of the weight of a given volume of the substance to the weight of an equal volume of pure water at 80° F/27°C.

The plates are sandwiched between layers of microfiber glass mat. Electrolyte is absorbed and held in place by the capillary potential of the fluid and the absorbent glass mat (AGM) fibers .

Grids and Plates

Each cell of a storage battery has positive and negative plates arranged alternately, insulated from each other by separators. Each plate consists of a framework, called the **grid**, and a lead paste compound called **active material**.

The grid is cast from a lead alloy. The heavy outside frame adds strength to the plate. The small horizontal and vertical wires support the active material. These wires also act as conductors for the current.

The lead paste compound (active material) is applied to the grid in much the same manner as plaster is applied to a lath wall. A different paste formula is used for the positive and negative plates.

In compounding the negative plate paste (active material), a substance is added known as an **expander.** This substance is relatively inert and makes up less than one percent of the mixture. Its purpose is to prevent the loss of porosity of the negative material during the life of the battery. Without the use of an expander, the negative material contracts until it becomes quite dense, thus limiting the surface area available for reaction.

Plate Groups

Plate groups are made by joining a number of similar plates to a common terminal post by means of a plate strap. The capacity of a battery is determined by the number and size of plates in a group. Each plate is made with a lug at the top which is fused to the strap. A positive group consists of a

number of positive plates connected to a plate strap and a negative group consists of a number of negative plates connected in the same manner. The two groups meshed together with separators between the positive and negative plates constitute a **cell element.**

Separators

The separa to rs uTled in aircraftba tterk is arhena de of micro-pdorous tholypropy lene matenal. e1r purpose 1s to eep t e plates separate and us prevent an internal short circuit. In the RG^{III} Series batteries a second separator made from microfiber absorbent glass mat (AGM) is also used.

The separator material must be extremely porous so that it will offer a minimum of resistance to the ioris passing through them. The material must also resist chemical attack from the electrolyte.

The **AGM**, by design, is approximately 92% saturated with electrolyte. The remainder is filled with gas. This voidspace provides the channels by which oxygen travels from the positive to the negative plate during charging. The freshly generated gases, which are in their atomic state and very reactive, recombine rapidly and safely.

The recombination passivates the negative slightly, reducing electrolysis and ultimately eliminating the need to add water. Because of the compressed construction, the RG^{'''} batteries have a much lower internal resistance and thus provide greater starting power and faster recharging, particularly at cold temperatures, than comparable flooded batteries. Additionally, the AGM provides a much higher degree of support against shock and vibration than in the older flooded (vented) batteries. The RG^{'''} batteries provide electrical performance comparable to nickel cadmium aircraft batteries without the requirement of a temperature or current monitoring system.

Cell Containers

When the cell elements are assembled, they are placed in the **cellcontainer** which is made of plastic. Usually cell containers are made up in a monobloc with as many compartments as there are cells in the battery. The plastic used is selected for its resistance to sulfuric acid, tow permeability and impact strength.

Cell Covers, Vent Valves and Vent Caps

The assembled cell has a *cover* made of material similar to that of the cell container. The cell or monobloc *cover* has holes through which the terminal posts extend and a retention hole for vent cap or valve attachment. When the *cover* is placed on the cell(s), it is sealed to the container or case with a special sealing compound to prevent leakage and loss of electrolyte.

Precautions

There are several precautions that must be observed when handling storage batteries and especially when charging.

When a flooded (vented) storage battery is being charged, it generates a substantial amount of hydrogen and oxygen. The vent caps should be left in place and no open flames, sparks or other means of ignition should be allowed in the vicinity.

Recombinant Gas (RG") storage batteries generally do not vent when being charged UNLESS they are being overcharged. Always turn off the power before connecting or disconnecting a storage battery from a charging source.

The electrolyte contains sulfuric acid. Sulfuric acid is very corrosive. Avoid contact with flesh, cloth or wood. Be very careful not to spill the electrolyte. If it is spilled, immediately rinse with water and neutralize it with a solution of water and bicarbonate soda or a mild ammonia and water solution.

There should be adequate ventilation of the area where storage batteries are being charged in order to dissipate the gasses and acid fumes.

Separate facilities for storing and/or servicing flooded electrolyte lead acid and nickel cadmium batteries must be maintained. Introduction of acid electrolyte into alkaline electrolyte will cause permanent damage to vented (flooded electrolyte) nickel-cadmium batteries and vice versa. However, batteries that are sealed can be charged and capacity checked in the same area. Because the electrolyte in a valve regulated lead acid battery is absorbed in the separators and porous plates, it cannot contaminate a nickel cadmium battery even when they are serviced in the same area.

Caution: Aircraft are certified with batteries that have reserve or essential capacity for emergency operation. Never "Jump start" an aircraft that has a "Dead" or discharged battery. It takes approximately three hours to fully recharge a discharged battery with the aircraft generating system.

NOTE: With flooded (vented) batteries, unless the battery electrolyte was accidently spilled, you should only add demineralized water in normal service. Water consumption varies with the operating temperature of the battery and the charging voltage.

 The electrolyte level should be checked at the end of charge and filled to the bottom of the level indicator with water when charging flooded (vented) batteries. Do not allow the reserve electrolyte level to go below the top of the plates or the battery performance and life will be reduced.

- 2) The capacity of flooded (vented) and Recombinant Gas (AG") batteries should be checked annually or as often as the Regional Airworthiness Authority Regulations require.
- 3) Discharged batteries exposed to cold temperatures are subject to plate and separator damage due to freezing. To prevent freezing damage to a lead acid battery, maintain the batteries in a charge state.

Activation of Dry Charged Batteries

Caution:

- Do not remove the sealing tape on the cell vents untll youare ready to fill thebattery with electrolyte. Aircraft Batteries require a pure diluted sulfuric acid electrolyte of 1.285specific gravity at ao°F or 21°c. Check the specific gravity of the electrolyte before filling thecells of the battery to be sure it is the correct type and specific gravity.
- 2) Use a clean hydrometer to determine the specific gravity of the battery electrolyte.
- 3) If it should become necessary to dilute concentrated sulfuric acid to alower specific gravity, ALWAYS POUR THE ACIDINTOTHE WATER.NEVER POUR WATER INTO ACID, a dangerous "spattering" of theliquid will result caused by the extreme heat which Is generated when strong acid is mixed with water. Stir llquld continuously while acid is being added.
- 4) When working with acid, always wear a face shield and protective clothing. Sulfuric acid can destroy clothing andburn skin. If electrolyte Is spilledor splashed on clothing or on the body, it must be neutralized Immediately with a solution of baking soda and water and rinsed with clean water.
- 5) If electrolyte is splashed into theeyes, force the eyes open and flood with coolclean water for approximately five minutes. Call a physician and get medical attention immediately.
- 6) If electrolyte Is taken Internally, drinklarge quantities of water or mllk,followed with mllk of magnesia, beaten egg or vegetable oil. Call a physician Immediately.
- 7) Do not place battery acid within the reach of children.

Caution: Hydrogen and oxygen gases are produced during normal battery operation. Explosive gases may continue to be present in and around the battery for several hours after it has been charged. Keep

sparks, flames, burning cigarettes and other sources of Ignition away at all times.

Mixing of Electrolyte

Electrolyte of a given specific gravity can be purchased; however, it is sometimes more convenient to mix it at the shop or hangar. The following table gives the proper amount of demineralized water to be mixed with a given amount of acid to obtain the desired specific gravity.

The container in which electrolyte is mixed should be made of glass, glazed earthenware or other material which will not be attacked by the acid.

Caution: When mixing acid with water, always pour the acid into the water. Never pour water into the acid. The heat generated may cause the acid to spatter on the operator. Severe burns may result.

After the electrolyte is mixed, it may be tested for specific gravity. If the specific gravity is not as desired, it can easily be adjusted by the addition of acidor water. Be sure to correct the specific gravity reading for temperature. (See temperature correction of S.G. reading.)

When purchasing acid or electrolyte for battery use, "commercial" grade acidshould not be used. Use "battery" grade sulfuric acid which is free of impurities that may contaminate a battery. It is not as expensive as the chemically pure grade, commonly called "Reagent Grade."

Battery Testing

Hydrometer Test

Themost common instrument used for the testing of flooded electrolyte batteries is the **hydrometer**. Concorde recommends the FR-1 Aircraft Battery Hydrometer. The specific gravity of the electrolyte in a battery cell is a good index of the state of charge in the cell. This is due to the tact that as the battery is discharged, the acid in the electrolyte is used in the chemical reaction. This means the acid has broken down, part of it combining with the lead of the plates to form lead sulfate and part of it combining with oxygen to form water. Since the weight of the acid is much greater than that of the water, the reduction of acidand the increase of water will cause the specific gravity of the electrolyte to decrease.

A hydrometer is used to determine the specific gravity of the electrolyte and it generally consists of a glass barrel with a rubber hose on one end and

a soft rubber bulb on the other. Inside the glass barrel is a glass float with calibrated graduations. The bulb is squeezed and the rubber hose is inserted into the electrolyte in the battery cell. When the bulb is released electrolyte is drawn into the glass barrel. At eye level and when the float has stabilized, the specific gravity is read at the point on the calibrated float where the surface of the electrolyte crosses the float markings. The specific gravity range is usually 1.100 to 1.300. After the reading is taken, the rubber bulb is squeezed to release the electrolyte back into the battery cell.

It is important to make sure the float is not sticking to the side of the glass barrel and that the electrolytecan be seen between the bottom of the float and the bottom of the glass barrel. If irregular readings are obtained, examine the glass float closely for hairline cracks. It is a good idea to have more than one hydrometer on hand so that one can be checked against the other. The hydrometer must be kept clean. Accumulation of dry acid can cause the float to read inaccurately. The hydrometer should be taken apart and washed occasionally.

A specific gravity reading from 1.275 to 1.300 usually indicates a fully charged cell. If the reading is from 1.200 to 1.240 the charge is considered low. This does not mean that the cell is nearly discharged, but it indicates that it may not be able to furnish power sufficient for heavy loads such as starting engines. A reading of 1.260 in a battery indicates a state of charge sufficient for normal operation, even though it is not fully charged.

It must be pointed out that the specificgravity reading is not always an indication of the state of charge in a cell. If the electrolyte is removed from a discharged cell and replaced with an electrolyte of a high specific gravity, the cell will still be in a discharged condition even though the hydrometer test shows a full charge reading.

Normally, electrolyte should never be added or removed from a cell. The addition of water is necessary periodically to replace the amount lost through electrolytic action and evaporation. Acid should never be added unless electrolyte has been lost by spillage because acid does not evaporate. When it is necessary to add acid, the battery should be fully charged, on charge and gassing freely. Then, by means of a rubber syringe or hydrometer, the electrolyte is drawn off and replaced with electrolyte having a specific gravity of 1.285. The charge should be continued for one hour before making another test.

Batteries are considered fully charged when the temperature corrected specific gravity reading is 1.285 ± 0.005 . A 1/3 discharged battery reads about 1.240 and a 2/3 discharged battery will show a specific gravity reading of about 1.200 when tested with a hydrometer. However, to determine precise specific gravity readings, temperature corrections shown in the table above should be applied.

The corrections in the table should be added or subtracted from the hydrometer reading. For example, if the temperature of the electrolyte is 10 degrees Fahrenheit, and the hydrometer reading is 1.250, the corrected

Ŀ

reading will be 1,250minus .028 equals 1.222. Notice that the correction points are in thousandths.

Charging Methods

NOTE: For specific charging Instructions see Concorde Battery Corporation's Instructions for Continued Air Worthiness Maintenance Manual Supplement for Concorde Flooded Lead Acid Main Batte,y (Drawing: 5-0144); Instructions tor Continued Air Worthiness Maintenance Manual Supplement for Concorde Valve Regulated Lead Acid Main Batte,y (Drawing: 5-0142); Instructions for Continued Air Worthiness Maintenance Manual Supplement for Concorde Valve Regulated Lead Acid Emergency Batte, y Packs (Drawing: 5-0143). See our website: www.concordebattery.com for the latest revision.

Storage batteries are charged by passing a direct current through them in a direction opposite to that of the discharge current. The power supply must be connected to the battery, positive to positive and negative to negative. Various sources of direct current may be used, but the most commonly used devices are either rectifiers or direct current generators. The manner in which batteries are connected to the power source will vary. This is usually determined by the type and the voltage of the batteries being charged. When batteries of different voltages must be charged by the same power supply, they are usually charged by the constant current method (CI). Another method used is the constant potential (CP) (voltage) method. This system is usually usedon aircraft, where an engine driven generator is continually charging the battery according to its requirements.

Battery charging methods may also be classified as "manually cycled" and "system governed" methods. Usually, where batteries are charged in the hanger or shop, the manually cycled method is employed. This means simply that the voltage or current is controlled by an operator according to the requirements of the batteries being charged. In the system governed method, the voltage of the power supply is automatically controlled by a carefully adjusted voltage regulator.

Constant Voltage Charging (CP)

The battery charging system in an airplane is of the constant voltage type. An engine driven generator, capable of supplying the required voltage, is connected through the aircraft electrical system directly to the battery. A battery switch is incorporated in the systemso that the battery may be disconnected when the airplane is not in operation. The voltage of the generator is accurately controlled by means of a voltage regulator connected in the field circuit of the generator.

For a 12-volt system, the voltage of the generator is adjusted to approximately 14.25. On 24-volt systems, the adjustment should be between 28 and 28.5 volts. When these conditions exist, the initial charging current through the battery will be high. As the state of charge increases the battery

voltO e ni:: 1: a : .ui e I :: /:::1most equal to the generator voltage, and very little current will flow into the battery. When the charging current is low, the battery may remain connected to the generator without damage.

1

At extremely low battery temperatures a setting of 28.5 volts does not supply enough current to charge a battery adequately. At battery temperatures in excess of 90°F the current input at 28.5 volts tends to over charge the battery.

When using a constant voltage system in a battery shop, a voltage regulator that automatically maintains a constant voltage is incorporated in the system. A higher capacity battery (e.g. 42 Ah) has a lower resistance than a lower capacity battery (e.g. 33 Ah). Hence a high capacity battery will draw a higher charging current than a low capacity battery when both are in the same state of charge and when the charging voltages are equal.

Con st an t Curr ent Charging (CI)

Constant current charging is the most convenient for charging batteries outside the airplane because several batteries of varying voltages may be charged at once on the same system. A constant current system usually consists of a rectifier to change the normal alternating current supply to direct current. A transformer is used ts/reduce the available 110 volt or 220 volt alternating current supply to the desired level before it is passed through the rectifier.

If a constant current system is used, multiple batteries may be connected in series, provided that the charging current is kept at such a level that the battery does not overheat or gas excessively.

Conditioning After Deep Discharge, see applicable Instructions for Continued Airworthiness (ICA)(Seeour website: www.concordebattery.com for the latest revision).

Capacity Test

For testprocedures and instructions, see Concorde's Instructions for Continued Airworthiness (ICA) (available on our website: www.concordebattery.com).

Batteries that have a capacity greater than 80% of the C1 ratedcapacity may be considered airworthy. To insure a safety margin, Concorde recom-
mends that batteries have an actual capacity of greater than 85% of the C1 ratedcapacity for installation in an aircraft.

Capacity testing devices for aircraft storage batteries have been developed and these give an accurate indication of the condition of a battery. **A capacity tester** generally incorporates load resistance, a voltmeter and a time clock. Some models show the percentage of capacity or ampere hours. A fully charged battery is connected to a measured load until the voltage, as indicated on the voltmeter, drops to a predetermined figure. At this time the readingon the clock is noted. The reading gives the capacity of the battery tested.

After this test, the battery should be recharged by either the constant current or constant voltage method described in the applicable ICA. For discharging or charging batteries, it is best to have a disconnect switch on the discharge apparatus or on the charging panel. The closing and opening of the battery circuit by use of spring clips on the battery terminals should be avoided as the resulting arc may cause an explosion of the battery gasses.

The discharge voltage of a healthy battery does not decrease with age although it will be found that an older battery may not have as high of an open circuit voltage when fully charged.

S.O.C.	12 volt O.C.V.	24 volt 0.C.V.	S.G.
100%	12.9	25.8	1.300
75%	12.7	25.4	1.270
50%	12.4	24.8	1.220
25%	12.0	24.0	1.140
0%	11.7	23.4	1.090

Battery Sta te of Cha rge (S.O.C.)

Battery State of Health

A battery's state of health must be determined by verifying its ability to provide sufficient stored energy for essential power requirements. The amount of stored energy (battery capacity) required to start a reciprocating engine is generally less than 3%, while a turbine engine start requires

approximately 10% of the rated capacity. Good starting performance is not necessarily a safe indication of the battery's state of health. An airworthy battery must be able to provide essential power in the event of a failure of the generating system. Therefore, a periodic capacity check of the battery at the C1 rate (one hour) is recommended.

Cold Weather Operation

Temperature is a vital factor in the operation and life of a storage battery. Chemical reactions take place more rapidly with heat than with cold. For this reason, a battery will give much better performance in temperate or tropical climates than in coldclimates. On theother hand, the battery willdeteriorate faster in warm climates. In some cases, a lower specific gravity electrolyte is specified for warm climate operation in order to add to the life of the battery because chemical reactions are more rapid in warmer climates.

In cold climates, the state of charge in a storage battery should be kept at a maximum. A fully charged battery will not freeze even under the most severe weather conditions, but a discharged battery will freeze very easily. When adding water to a battery in extremely cold weather, the battery must be charged at once. If this is not done, the water will not mix with the acid and will freeze

The following table gives the freezing points of electrolyte for various states of charge. These are the approximate points at which ice crystals start to form. The electrolyte does not freeze solid until a lower temperature is

Specific	Freezing Point		
Gravity	OC	OF	
1.300	- 70	- 95	
1.275	-62	-80	
1.250	- 52	-62	
1.225	- 37	- 35	
1.200	- 26	- 16	
1.175	- 20	- 4	
1.150	- 15	+ 5	
1.125	-10	+13	
1.100	- 7	+19	

reached. Solid freezing of electrolyte in a discharged battery will damage the plates and may rupture the container.

Capacity Loss Due to Low Temperatures

Operating a storage battery in cold weather is equivalent to using a battery of lower capacity. For example, a fully charged battery at 80°F may be capable of starting an engine twenty times. At 0°F the same battery may start the engine only three times.

Low temperature greatly increases the time necessary for charging a battery. A battery which could be recharged in an hour at 80° F while flying may require approximately five hours for charging when the temperature is 0° F.

During cold weather, keep batteries fully charged. Make every effort to conserve battery power.

Ventilating Systems

Modem airplanes are equipped withbattery ventilating systems. The ventilating system provides for the removal of gasses and acid fumes from the battery in order to reduce fire hazard and to eliminate damage to airframe parts. Air is carried from a scoop outside the airplane through a vent tube to the interior of the battery case. After passing over the top of the battery, air, battery gasses and acid fumes are carried through another tube to the battery sump.

This sump is a glass or plastic jar of at least one pint capacity. In the jar is a felt pad about 1 inch thick saturated with a 5% solution of bicarbonate of soda and water. The tube carrying fumes to the sump ex1ends into the jar to within about 1/4 inchof the felt pad.

An overboard discharge tube leads from the top of the sump jar to a point outside the airplane. The outlet for this tube is designed so there is negative pressure on the tube whenever the airplane is in flight. This helps to insure a continuous flow of air across the top of the battery, through the sump and outside the airplane. The acid fumes going into the sump are neutralized by the action of the soda solution, thus preventing corrosion of the aircraft's metal skin or damage to a fabric surface.

Inspection and Service

See applicable ICA.

Storage

See applicable ICA.

Battery Terminology

Active material: Electrode material which produces electricity during its chemical conversion.

AGM: Absorbent glass mat.

Ampere: Unit of electrical current.

Ampere hour (Ah): The capacity of a storage battery is measured in **ampere hours.** One ampere hour is defined as a current flow of one ampere for a period of one hour. Five ampere hours means a current flow of one ampere for five hours, a current flow of 2-1/2 amperes for 2 hours, or any multiple of current and time that will give multiples of five. This relationship can be expressed as follows: Capacity (in ampere hours)= I X T, when I is the current (in amperes) and Tis the time (in hours). The capacity of a storage battery is usually based on a given discharge rate, since the capacity will vary with the rate of discharge. The capacity of an aircraft battery is generally based on **1 hour discharge rate (C1).** A 17 ampere hour battery will supply a current of approximately 17 amperes for a period of 1 hour. A 34 ampere hour battery will deliver twice that amount of current for the same period of time. If a very heavy load is applied to the battery, it may become discharged in a few minutes.

Battery: A combination of two or more chemical cells electrically connected together to produce electric energy. Common usage permits this designation to be applied also to a single cell used independently.

Boost charge: A charge applied to a battery which is already near a state of full charge. Usually a charge of short duration.

C1 rate: The one hour discharge or current rate in amperes that is numerically equal to ratedcapacity of a cell or battery in ampere hours.

Capacity: The quantity of electricity delivered by a battery under specified conditions, usually expressed in ampere hours.

Capacity, rated: See nominal capacity.

Cell: An electrochemicaldevice composed of positive and negative plates, separator and electrolyte which is capable of storing electrical energy.

Cell reversal: Reversing of polarity within a cell in a mullicell battery due to over discharge.

Charge: The conversion of electrical energy from an external source into chemical energy within a cell or battery.

Charge rate: The rate at which current is applied to a secondary cell or battery to restore its capacity.

Charge retention: The tendency of a chargedcell or battery to resist selfdischarge.

Concavo/concave: AG* batteries have one-way cell vent valves designed to relieve excess positive internal pressure. Occasionally, when the atmospheric pressure is greater than the internal pressure of the battery (caused by a rapid decrease in altitude), the battery case may become temporarily concave.

Constant potential (CP) charge: Charging technique where the output voltage of the charge source is held constant and the current is limited only by the resistance of the battery.

Constant current (CI) charge: Charging technique where the output current of the charge source is held constant and the voltage is not regulated.

Counter EMF: Voltage of a cell or battery opposing the voltage of the charging source. When the electromotive force (EMF) of the source is greater than the EMF of the battery, the current flows in the reverse direction.

Current: The rate of flow of electricity. The movement ol electrons along a conductor. It is comparable to the flow of a stream of water. The unit of measurement is an ampere.

Cut off **voltage**: Battery voltage reached at the termination of a discharge. Also known as end point voltage (EPV or VEP).

Deep discharge: Withdrawal of 50% or more of the ratedcapacity of a cell or battery.

Deionized water: Water which has been freed of ions by treatment with ion exchange resins. Deionized and distilled are not the same.

Depth of discharge: The portion of the nominal capacity from a cell or battery taken out during each discharge cycle, expressed in a percentage. Shallow depth of discharge is considered as 10% or less, deep depth of discharge is considered as 50% or more.

Discharge: The conversion of the chemical energy of a cell or battery into electrical energy and withdrawal of the electrical energy into a load.

Discharge rate: The rate of current flow from a cell or battery.

Distilled water: Water that has been freed of minerals or metallic impurities by a process of vaporization and subsequent condensation. Deionized and distilled are not the same.

Dry charge: Process by which the electrodes are formed and assembled in a charged state without electrolyte. The cell or battery is activated when the electrolyte is added.

Effective Internal resistance (Re): The apparent opposition to current within a battery that manifests itself as a drop in battery voltage proportional to the discharge current. Its value is dependent upon battery design, state of charge, temperature and age.

Electrolyte: In a leadacid battery, the electrolyte is sulfuric acid diluted with water. It is a conductor and is also a supplier of hydrogen and sulfate ions for the reaction.

Electromotive force (EMF): Potential causing electricity to flow in a closed circuit.

Electron: That part of an atom having a negative charge.

End of discharge voltage: The voltage of the battery at the termination of a discharge test but before the discharge is stopped. See cut off voltage and End point voltage (EPV).

End of life: The stage at which the battery or cell meets specific failure criteria.

End point voltage (EPV): Cell or battery voltage at which point the rated discharge capacity had been delivered at a specified rate of discharge. Also used to specify the cell or battery voltage below which the connected equipment will not operate or below which operation is not recommended. Sometimes calledcutoff voltage or voltage end point.

Entrainment: The process whereby gasses generated in the cellcarry electrolyte through the vent cap.

Fast charging: Rapid return of energy to a battery at the C rate or more.

Float charge: A method of maintaining a cell or battery in a charged condition by continuous, long term constant voltage charging at a level sufficient to balance self discharge.

Flooded cell: Concorde's cell design with a removable vent cap that allows the user to service the cell(e.g. check electrolyte levels, specific gravity, etc.). Also called a **vented cell**.

Gassing: The evolution of gas from one or more of the electrodes in a cell. Gassing commonly results from local action (self discharge) or from the electrolysis of water in the electrolyte during charging.

Ground: In aircraft use, the result of attaching one battery cable to the body or airframe which is used as a path for completing a circuit in lieu of a direct wire from a component.

Hydrometer: A float type instrument used to determine the state of charge of a battery by measuring the specific gravity of the electrolyte (i.e. the amount of sulfuric acid in the electrolyte).

Instructions for Continued Airworthiness: ICA

Internal impedance: The opposition to the flow of an alternating current at a particular frequency in a cell or battery at a specified state of charge and temperature.

Internal resistance: The opposition or resistance to the flow of a direct electric current within a cell or battery; the sum of the ionic and electronic resistance of the cell components. Its value may vary with the current, state of charge, age and temperature. With an extremely heavy load, such as an engine starter, the cellvoltage may drop to approximately 1.6 volts. This voltage drop is due to the internal resistance of the cell. **A** cell that is partly discharged has a higher internal resistance than a fully charged cell, hence it will have a greater voltage drop under the same load. This internal resistance is due to the accumulation of lead sulfate on the plates. The lead sulfate reduces the amount of active material exposed to the electrolyte, hence it deters the chemical action and interferes with the current flow.

Ion:Molecule or group of atoms, positively or negatively charged, which transports electricity through the electrolyte.

Joules: Unit of energy, equal to a watt second (a newton meter).

Lead acid: Term used in conjunction with a cell or battery that utilizes lead and leaddioxide as the active plate materials in a diluted electrolyte solution of sulfuric acid and water. Nominal cell voltage about 2.1 volts.

Lead dioxide: A higher oxide of lead present in charge positive plates and frequently referred to as lead peroxide.

Lead sulfate: A lead salt formed by the action of sulfuric acid on lead oxide during paste mixing and formation. It is also formed electrochemically when a battery is discharged.

Load tester: An instrument which measures the battery voltage with an electrical load on the battery to determine its overall condition and its ability to perform under engine startingconditions or essential power requirements.

Nominal capacity: A designation by the battery manufacturer that helps identify a particular cell model and also provides an approximation of capacity; usually expressed in ampere hours at a given discharge current.

Nominal voltage: Voltage of a fully chargedcell or battery when delivering ratedcapacity at a specified discharge rate.

Open circuit voltage (O.C.V.): The voltage of a battery when it is not delivering or receiving power.

Overcharge: The forcing of current through a cell after all the active material has been converted to the charged state. In other words, charging continued after 100% state of charge is achieved. The result will be the decomposition of water in the electrolyte into hydrogen and oxygen gas.

Oxygen recombination:The process by which oxygen generated at the positive plate during charge reacts with the pure lead material of the negative plate and in the presence of sulfuric acid reforms water.

Parallel connection: A circuit in which battery poles of like polarity are connected to a common conductor; i.e., higher capacity while voltage remains the same.

Polarity: The electrical term used to denote the voltage relationship to a reference potential. (+ or -)

Power: Rate at which energy is released or consumed (expressed in watts).

Rated capacity: The number of ampere hours a battery can deliver under specific conditions (rate of discharge, end voltage, temperature).

Re: See Effective internal resistance.

Recombination: State in which the hydrogen and oxygen gases normally formed within the battery cell during charging are recombined to form water.

Resealable: In a cell, pertains to a safety vent valve, which is capable of closing after each pressure release, in contrast to the non-resealable vent cap.

Sealed cell: Cells that are free from routine maintenance and cannot be serviced by the user. Concorde batteries can be installed and operated without regard to position of the battery.

Self discharge: The decrease in the state of charge of a cell or a battery, over a period of time, due to internal electro chemical losses, effected by environmental temperatures.

Separator: A porous, insulating material placed between plates of opposite polarities to prevent internal short circuits.

Specific gravity (S.G.): The weight of the electrolyte is compared to the weight of an equal volume of pure water, used to measure the strength or percentage of sulfuric acid in the electrolyte.

Starved cell: A cell containing little or no free fluid electrolyte solution. This enables gases to reach electrode surfaces readily, and permits relative high rates of gas recombination.

State of charge (S.O.C.): The available ampere hours in a battery at any given time. State of charge is determined by the amount of sulfuric acid remaining in the electrolyte (specific gravity) at the time of testing or by the stabilized open circuit voltage (O.C.V.).

Sulfation: In its common usage, the term refers to the formation of lead sulfate with physical properties that are extremely difficult, if not impossible, to reconvert it to activematerial.

Swelling: R battery cases swell or bulge when the cell vent valves maintain an internal pressure that is greater than the outer (atmospheric) pressure.

Trickle charge: A continuous, low rate charge, the rate being just about sufficient to compensate for self-discharge losses.

Vent valve: A normally sealed mechanism which allows the controlled escape of gases from within a cell.

Vent cap: The plug on top of a cell. It can be removed to allow for electrolyte level adjustment on flooded (vented) batteries.

Vented cell: SeeFlooded cell.

Venting: A release of gas either controlled {through a vent) or accidental.

Volt: Unit of electromotive force, voltage or potential. The volt is the voltage between two points of a conductor carrying a constant current of one ampere, when the power dissipated between these points is one watt.

Appendix 4: Aircraft Tires

Aircraft Tire ConstructionPage 337SafetyPage 338Tire Care BasicsPage 339MountingPage 340On-Aircraft Tire InspectionPage 341WearPage 342Limits for Tire DamagesPage 342DismountingPage 345

Aircraft Tire Construction

Tread

Thearea of the tire that is actually in contact with the ground. The tread of most modern aircraft tires contain circumferential grooves to channel water from between the tire and the runway surface.

Undertread

The layer of rubber designed to enhance the bonding between the carcass body and the tread reinforcing plies in bias tires or the protector plies in radial tires.

Carcass Ply

Fabric cords (generally nylon), sandwiched between two layers of rubber and anchored by wrapping them around the bead wires.

Bead

A bundle of steel wires embedded in rubber and wrapped with rubber-coated fabric, used to anchor the tire to the wheel.

Chafer Strips

Strips of protective fabric or rubber laidover the outer carcass plies in the beadarea of the tire to protect the carcass plies from damage when mounting or demounting the tire, and to reduce the effects of wear and chafing between the wheel and the tire bead.

Liner

In a tubeless tire, this is a layer of specially compounded rubber extending from bead to bead to resist the permeation of nitrogen and moisture through to the carcass. With a tube-type tire, a thinner liner material is used to protect the carcass plies from moisture and the tube from chafing. The liner of a tube-type tire is generally insufficient for air retention.

Sidewall

A layer of rubber covering the outside of the carcass plies.

Bias Ply Tires

The carcass plies laid at angles between 30° and 60° to the centerline of the tire. The succeeding plies are laid with the cord at angles that are opposite to each other. Most modern aircraft tires are bias-ply tires.

Tread Reinforcing Ply

This consists of single or multiple layers of a special nylon fabric and rubber laid midway beneath the tread grooves and top carcass ply to help reduce treaddistortion under load.

Radial Tires

Each carcass ply is laid at an angle of approximately 90° to the centerline of the tire. Radial tires have fewer plies than bias tires of the same size because the cord direction is aligned with the burst pressure radial force.

Protector Ply

A ply found in retreadable tires in the crown area just under the tread rubber that provides cut resistance to the underlying belts and carcass plies.

Belt Plies

Plies laid between the tread area and the top carcass ply to restrain the outer diameter of the tire giving the tread surface greater resistance to squirm and wear.

Chine

A deflector molded into the sidewall of a nose-wheel tire to deflect water and slush to the side and away from aft-fuselage mounted engines.

Safety

Aircraft tire and wheel assemblies contain high pressures to support the loads placed on them. All maintenance should be conducted according to the recommendations of the tire, wheel, and aircraft manufacturers.

Before mounting any tire, visually examine the tire and the wheel for *any* indication of damage.

After a tire has been mounted, inflate it to the recommended inflation pressure. Most aircraft tires rated for over 190 MPH are inflated with nitrogen.

- When inflating tires, be sure to use a suitable inflation cage.
- Keep pressure hose and fittings used for inflation in good condition.
- Allow the tire to remain in the inflation cage for several minutes after reaching its full inflation pressure.

In service, tires should also be treated with careso as to avoid conditions that would damage the tire and wheel assembly or create a dangerous situation tor those around the assembly or aircraft.

- Never approach, or allow anyone else to approach, a tire and wheel assembly mounted on an aircraft that has obvious damage until that assembly has been allowed to cool to ambient temperature. This generally takes at least three hours.
- Always approach a tire and wheel assembly from an oblique angle, in the direction of the tire's shoulder.
- Deflate tires before removing the assembly from the aircraft unless it will be immediately remounted (for example, in the case of a brake inspection).
- Always deflate the tires before attempting to dismount the tire from the wheel or disassembling any wheel component.
- Use extreme caution when removing valve cores as they can be propelled from the valve stem at a high rate of speed.
- When tire and wheel assemblies are found with one or more tie bolt nuts damaged or missing, remove the assembly from service.
- While serviceable tires may be shipped fully pressurized in the cargo area of an aircraft, it is preferred to reduce pressure to 25% of their operating pressure.

Tire Ca re Basics

Storage

Aircraft tires and tubes should always be stored in a dry environment, free from sunlight and ozone-producing appliances such as air compressors and florescent or mercury vapor lights. Tires should always be stored vertically, on their tread. Stacking tires on their sidewall can cause the beads to collapse, making the mounting process difficult.

Inflation Pressure

It is most important that the aircraft's tires be properly inflated at all times. Tire pressure should be checked before each day of flying, always maintaining the operating pressure specified by the airframe manufacturer.

Properly Inflating Tube-Type Tires

Air is usually trapped between the tire andthe tube during mounting. Although initial readings show proper pressure, the trapped air willseep out around the valve stem hole in the wheel, and under the tire beads. Within a few days the tube will expand to fill thevoid left by the trapped air, and the tire maybecome severely underinflated. Check tire pressure before each flight for several days after installation, adjusting as necessary, until the tire maintains proper pressure.

Tir e Growth

During the first 12 hours after mounting and initial inflation, the nylon plies of aircraft tires will generally grow and the inflation pressure of the tire will drop about 6-10%. Adjust as necessary.

Mounting

Whee Is

When mounting a tire on a wheel, follow the recommendations and procedures of the wheel manufacturer.

Special care should be given to the following:

- Ensure that the beadseating area of the wheel is clean.
- Mating surfaces of the wheel halves should be free of nicks, burrs, small dents, or other damage. Painted or coated surfaces should be in good condition.
- Be sure fuse plugs, inflation valves, and wheel plugs are in good condition and properly sealed against pressure loss.
- · Check 0 -ring grooves in the wheel halves for damage or debris.
- Check to see that the 0-rings have the proper part number.

Tires

Before mounting any tire, check that the tire markings are correct for the required application (size, ply rating, speed rating, part number, and TSO marking).

Visually inspect the outside of the tire for:

- Damage caused by improper shipping or handling.
- Cuts, tears, or other foreign objects penetrating the rubber.
- · Permanent deformations.
- Debris or cuts on the bead seating surfaces.
- Bead distortions.
- Cracking that reaches the cords.
- Contamination from foreign substances (oil, grease, brake fluid, etc.) which can cause surface damage.

Inspect the inside of the tire for:

- Foreign material.
- Wrinkles in or damage to the inner liner.

Initial Pressure Retention Check

Theinitial pressure retention check requires about 15 hours and it should be conducted as follows:

- Inflate the newly mounted tire to specified operating pressure and store it for 3 hours.
- Check the inflation pressure (be sure that the ambient temperature has not changed more than 5°F- a drop of S°F will reduce inflation pressure by 1%). If the inflation pressure has dropped to less than 90% of the original value, use a soap solution on tire beads, valves, fuse plugs, etc. to find the leakage. Make appropriate repairs and repeat the test.
- After a 12-hour storage period, check the inflation pressure. If the inflation pressure has dropped to less than 95% of the original value, the tire is defective and it must be rejected.

On-Aircraft Tire Inspectia

Inflation Pressure

Tire pressure should be checked before the first flight of the day. If this is not possible, wait at least 3 hours after landing to allow the tire to cool to ambient temperature. Never bleed pressure from a hot tire.

Effect s of Underinflation

Underinflated tires can creep or slip on the wheel under stress or when brakes are applied. Valve stems can be damaged or sheared off and the tire, tube, or complete wheel assembly can be damaged. Excessive shoulder wear may also be seen. Underinflationcan allow the sidewalls of the tire to be crushed, causing bead damage. Severe underinflation may cause ply separation and carcass degradation. This can also cause inner-tube chafing and a resultantblowout.

Effect s of Overinflation

Overinflated tires are more susceptible to bruising, cuts, and shock damage, and the ride quality and operating life are reduced. Extremely high inflation pressures may cause the aircraft wheel or tire to explode, or burst. Never operate aircraft tires above rated inflation pressure.

Wear

Remov al Crit e ria

In the absence of specific instructions from the airframe manufacturer, a tire should be removed from service for wear using this criteria based on the fastest wearing location. (See illustration at right.)

- When the wear level reaches the bottom of any groove along more than 1/8 of the circumference on any part of the tread, or
- If either the protector ply (radial) or the reinforcing ply (bias) is exposed for more than 1/8 of the circumference at a given location.
- Operating a tire at a higher pressure than required will cause increased wear at the center of the tread. This will make the tire more susceptible to bruises, cutting, and shock damage.
- When a tire is consistently operated underinflated, shoulder wear will result. Severe underinflation may cause ply separations and carcass heat build-up, which can lead to thrown treads and sidewall fatigue.
- If a tire is worn into the carcass/body plies, the strength of the tire will be reduced. This may cause the tire to burst or explode.
- Flat spotting is a result of the tire skidding without rotating, and is usually caused by brake lock-up or a large steer angle.
- Asymmetrical wear is a result of the tire operating under prolonged yaw and/or camber.
- Any time an aircraft has made a particularly rough landing or an aborted takeoff, the tire, tube, and wheel should be checked.

Limits for Tire Damages

Tread Cuts

In the absence of specific cut-removal instructions from the airframe manufacturer, tires should be removed when:

- Cuts, embedded objects, or other injuries expose or penetrate the carcass plies (bias) or tread belt layers (radial).
- A cut or injury severs or extends across a tread rib.
- Undercutting at the base of any tread rib cut.
- Round foreign object damage greater than .375" in diameter.

Bulge s or Separations

Any bulge or separation is cause for immediate removal of the tire from service.

Common tire wear conditions

Courtesy Michelin Aircraft Tire

Chevron Cutting

Remove a tire from service if chevron cutting or any other action results in tread chunking which extends to and exposes the reinforcing or protector ply more than one square inch.

Peeled Rib

Remove the tire from service if the reinforcing ply or protector ply is exposed.

Gro o ve Cra ckin g

Remove the tire from service if groove cracking exposes the reinforcing ply or protector ply for more than 1/4• in length.

Contamination From Hydrocarbons

R e mo ve t i re from service when:

- A. Depth of cut exposes the casing outer ply (bias) or outer belt layer (radial).
- B. A tread rib has been severed.
- C. Undercutting occurs at the base of any cut.

Oil, grease, brake fluids,

solvents, etc., can soften or deteriorate rubber components. If a tire comes in contact with any of these, immediately wash the contaminated area with denatured alcohol, then with a soap and water solution. If the contaminated area is soft and spongy compared to an unaffected area of the tire, remove the tire from service.

Sidewall Cuts

If sidewall cords are exposed or damaged, remove the tire from service. Cuts in the rubber that do not reach the cord plies are not detrimental to tire performance and the tire may remain in service.

Weather / Ozone Cracking

Remove the tire from service only if weather or ozone cracks extend to the cord plies.

Common damage conditions

Courtesy Michelin Alrcrah Tire

Dismounting

A. Bulge

D. Peeled rib

Be sure to follow the instructions and precautions published by the wheel manufacturer.

- Before deflating, use colored chalk to mark any damaged or bulge areas.
- Completely deflate the tire or tube before dismounting.
- Use a bead breaker to loosen tire beads from both wheel-half flanges.
 - 1. Apply beadbreaker pressure slowly, or in a series of jogs, to allow time for the tire's beads to slide on the wheel.
 - 2. If the tire has become fixed to the wheel
 - a. Release bead-breaker pressure and apply a soap solution to the tire/wheel interface.
 - b. Allow several minutes for the solution to penetrate between the tire and wheel.
 - c. Reapply a reduced breaker pressure to the tire.
 - d. Repeat several times if necessary.
 - 3. If the tire still remains stuck:
 - a. Remove the tire/wheel assembly from the bead breaker.
 - b. Reinflate the tire in a cage until the bead moves back to its correct position.
 - c. Deflate the tire.
 - 4. Continue the dismountingprocedure:
- Remove tie bolts and slide out both parts of the wheel from the tire.
- For tube-type tires, remove the tube.

Off-Aircraft Inspection with Tire Dismounted

Follow this procedure:

- · Inspect the treadarea.
- Inspect both sidewall areas.
- Inspect the bead areas for chafing or damage.
- Inspect the innerliner. Tires with loose, frayed or broken cords or wrinkles should be discarded. Liner blisters, especially in tubeless tires, should be left undisturbed.
- Inspect the inner tube, if applicable. Tubes with leaks, severe wrinkles or creases, or chafing should be discarded.
- Inspect for wheel damage according to the wheel manufacturer's recommendations.

Vibrati on and Balance

Vibration, shimmy, and other similar conditions are usually caused by improper tire balance but there are a number of other conditions that can cause or contribute to aircraft vibration.

The following inspections will help identify and/or prevent vibration problems:

- Check the tire for proper inflation pressure.
- Assure that the tire has reached full growth before it is installed on the aircraft.
- Check to see that the tire beads are properly seated.
- Check the tire for flat spotting or uneven wear.
- · Verify that the tires are properly mounted.
- Check for air trapped between the tire and tube.
- Check for wrinkles in the tube.
- · Check the wheel for an imbalance due to improper assembly.
- Check to see that the wheel has not been bent.
- Check for a loose wheel bearing caused by an improperly torqued axle nut.
- · Check for poor gear alignment as evidenced by uneven wear.
- · Check for worn or loose landing gear components.

Adapted from tha Michelin Aircraft TireGare and Service Guide. courtesy Michelin Aircraft Tire.

Index

A	T
aircraft drawings, types of	
aircraft hardware standards	177
aircraft nationality identification	21
aircraft nomenclature	13
axes of an airplane	13
types of aircraft structure	14
monocoque	14
semimonocoque	
truss	14
aircraft storage batteries	
lead-acid batteries	
nickel-cadmium batteries	
alternating current	91
aluminum alloys	
composition of	121
mechanical properties of	123
minimum bend radii for 90° bends	
aramid	
area of a circle	55
ATA-100 system	

B

ballpeen hammer	166
bearing strength, aluminum alloy sheet	
bend allowance chart	215
bending and forming tools	145
box brake	144
cornice brake	144
English wheel	145
press brake	144
slip roll former	145
bleeder schedules	305
blind rivets	195
CherryMax rivets, Olympic-Lok rivets, huck rivets	198
friction-lock rivets	
mechanical-lock rivets	197

С

cart:>on and graphite fibers	296
carpenter's claw hammer	166
center of gravity locating	
CG datum alt of the main wheels	
nose wheel landing gear	
tail wheel landing gear	287
CG datum forward of the airplane	
nose wheel landing gear	
CG datum forward of the main wheels	
tail wheellanding gear	
chemical elements, electron distribution	38
chisels	149
capechisel	
diamond point chisel	149
flat chisel	149
round nose chisel	149
circumference of a circle	55
combination set	135
compound curves, forming	145
control cable tension	264
control cable terminals	261
control cables	260
control systems, types of	259
push-pull rods	259
torque tubes	259
conversions	4
core materials for composite applications	
corrosion	241
exfoliation	239
filiform	242
fretting	242
galvanic	240
intergranular	239
stress	240
surface and pitting	238
types of	235
corrosion control	243
countersink	156
cowling fasteners	202
cross-linking, resin systems	294
cube roots of numbers	52

D

decimal equivalents	3
dial indicator	140
diameter of a circle	55
dividers	136
drill gage	
drill size, body and tap	
drills for wood and composite materials	
auger bits	
brad-point drills	
flat wood-boringbits	
forstner bits	
spade drill	

E

eddy current inspection	251
electrical formulas	94
both capacitance and inductance	100
capacitance	
inductoria	
resistance	
electrical symbols	83
capacitors	85
conductors	83
connectors	90
indicators	87
inductors	
logic devices	
power sources	
resistors	
semiconductor devices	
switches	
electrical system installation	101

F

24
150

١.

fill face	
fill yams	
flexible fluid lines	
fluid line identification	
fraction equivalents	3

G

geometric formulas		58,	59,	60
--------------------	--	-----	-----	----

H

hand shears	
compound shears	147
tin snips	146
harness satin weaves	
heat treatment temperatures-aluminum alloys	125
hermaphrodite calipers	
high-strength pin rivets	
Hi-Lok fasteners	
Hi-Shear rivet	
Hi-Tigue fasteners	
holding tools	141
hole cutting tools	
large hole cutters	
fly cutter	
hole saws	
hook rule	
hydraulic relationships	

ICAO standard atmosphere	. 37
inside calipers	136

K

L

ines, meaning of	. 77
iquids, density of	. 41
ocation identification	.79
butt lines	.79
fuselage stations	. 79
water lines	.79
wing and horizontal stabilizer stations	. 79

М

material symbols78mathematical constants50mathematical symbols51mean aerodynamic chord288measurement systems47international system of units (SI)47metric system48U.S. · metric conversion48weight48metasuring and layout tools135metalworking hammers166body, or planishing hammer166mallets and soft-face hammers167straight peen and cross peen hammers166metric equivalents33micrometer caliper138	magnetic particle inspection	
mathematical constants50mathematical symbols51mean aerodynamic chord288measurement systems47international system of units (SI)47metric system48U.S. · metric conversion48length48volume49weight48metalworking hammers166body, or planishing hammer166mallets and soft-face hammers167straight peen and cross peen hammers166metric equivalents33micrometer caliper138	material symbols	78
mathematical symbols 51 mean aerodynamic chord 288 measurement systems 47 international system of units (SI) 47 metric system 43 U.S. · metric conversion 48 volume 49 weight 48 metasuring and layout tools 135 metalworking hammers 166 body, or planishing hammer 166 mallets and soft-face hammers 167 straight peen and cross peen hammers 166 metric equivalents 3 metric equivalents 3	mathematical constants	
mean aerodynamic chord 288 measurement systems 47 international system of units (SI) 47 metric system 48 U.S. · metric conversion 48 volume 49 weight 48 metasuring and layout tools 135 metalworking hammers 166 body, or planishing hammer 166 sledge hammers 167 straight peen and cross peen hammers 166 metric equivalents 33 micrometer caliper 138	mathematical symbols	51
measurement systems 47 international system of units (SI) 47 metric system 41 U.S. · metric conversion 41 length 48 : volume 49 weight 48 metasuring and layout tools 135 metalworking hammers 166 body, or planishing hammer 166 sledge hammers 167 straight peen and cross peen hammers 166 metric equivalents 3 micrometer caliper 138	mean aerodynamic chord	
international system of units (SI)	measurement systems	
metric system 41 U.S. · metric conversion 41 length 48 : volume 49 weight 48 measuring and layout tools 135 metalworking hammers 166 body, or planishing hammer 166 mallets and soft-face hammers 167 sledge hammers 167 straight peen and cross peen hammers 166 metric equivalents 3 micrometer caliper 138	international system of units (SI)	
U.S. · metric conversion 44 length 48 : volume 49 weight 48 measuring and layout tools 135 metalworking hammers 166 body, or planishing hammer 166 mallets and soft-face hammers 167 sledge hammers 167 straight peen and cross peen hammers 166 metric equivalents 3 micrometer caliper 138	metric system	
length 48 : volume 49 weight 48 measuring and layout tools 135 metalworking hammers 166 body, or planishing hammer 166 mallets and soft-face hammers 167 sledge hammers 167 straight peen and cross peen hammers 166 metric equivalents 3 micrometer caliper 138	U.S. • metric conversion	
volume49weight48measuring and layout tools135metalworking hammers166body, or planishing hammer166mallets and soft-face hammers167sledge hammers167straight peen and cross peen hammers166metric equivalents3micrometer caliper138	length	
weight 48 measuring and layout tools 135 metalworking hammers 166 body, or planishing hammer 166 mallets and soft-face hammers 167 sledge hammers 167 straight peen and cross peen hammers 166 metric equivalents 3 micrometer caliper 138	volume	
measuring and layout tools 135 metalworking hammers 166 body, or planishing hammer 166 mallets and soft-face hammers 167 sledge hammers 167 straight peen and cross peen hammers 166 metric equivalents 3 micrometer caliper 138	weight	
metalworking hammers 166 body, or planishing hammer 166 mallets and soft-face hammers 167 sledge hammers 167 straight peen and cross peen hammers 166 metric equivalents 3 micrometer caliper 138	measuring and layout tools	
body, or planishing hammer 166 mallets and soft-face hammers 167 sledge hammers 167 straight peen and cross peen hammers 166 metric equivalents	metalworking hammers	
mallets and soft-face hammers 167 sledge hammers 167 straight peen and cross peen hammers 166 metric equivalents	body, or planishing hammer	
sledge hammers 167 straight peen and cross peen hammers 166 metric equivalents .3 micrometer caliper 138	mallets and soft-face hammers	
straight peen and cross peen hammers	sledge hammers	
metric equivalents	straight peen and cross peen hammers	
micrometer caliper	metric equivalents	3
	micrometer caliper	138
monocoque structure	monocoque structure	14

Ν

nondestructive inspection	247
number systems	68

0

Ohm's law relationships	92
outside calipers	
oxidation	
oxygen system servicing	279

p

penetrant inspection plain weave	249 299
pliers	141
combination/slip joint pliers	141
needle-nose pliers	142
vise-grip pliers	142
water pumppliers	142
ply orientation convention	302
polymerization	
pounding tools	166

powers of ten	65
, punches	
automatic center punch	168
center punch	
drift,or starting punch	167
pin punch	168
prick punch	167
transfer punch	

Q

quantity of liquid in a d	Irum	
---------------------------	------	--

R

radiography;	253
gamma rays	. 254
x-rays	253
reamers	157
resin mix ratios	294
resin system	293
resistor color codes	114
rib stitch knots	. 230
rib stitch spacing	229
rigid fluid lines	269
rivet head identification	220
rivets and riveting	218
aircraft solid rivets	218
examples of rivet selection	223
rivet diameter	219
rivet length	. 223
rivet material	219
alternatives to riveting	218
blind rivet code	. 225
installing flush rivets	225
riveting tools	. 224
bucking bars	
rivet sets	224
rivets or bolts required 2017, 2024.	221
rivets or bolts required 5052	. 222

S

SAE classification of steel	
safety wiring tools	
diagonal cutting pliers	
duckbill pliers	
safety wiretwisting too!	

saws1	47
band saw1	47
hacksaw14	48
wood saws	48
backsaw14	49
compass, or keyhole saw14	48
crosscut saw14	48
ripsaw14	48
scarfing	0
screw pitch gage	61
screwdrivers	78
offset screwdriver	3
recessed-head screwdrivers17	73
screw heads for special structural screws1	74
slot screwdrivers	73
screws1	81
aircraft screw heads	82
self-tapping sheet-metal screws	83
set screws	83
scriber	36
selvage edge	98
setback	12
setback (K) chart	12
shear strength of aluminum allov rivets	27
shears	45
scroll shears	46
squaring shears	46
throatless shears	45
sheet metal layout and forming 2	07
definitions 2	07
forming 2'	10
lavout procedure	08
small-hole gages	40
socket wrenches	71
extension and adaptors	72
hand impact tool	1
socket wrench handles	71
typical socket-wrenches	72
solids density of	<u>41</u>
square roots of numbers	52
standard taxi signals	22 28
standards aircraft hardware	20 77
	5
stepning 24	02
stepping	20
suitch derating factors	∠3 08
Switch derating lactors	00

tap test	248
taps	
bottoming tap	
plug tap	160
taper tap	
telescoping gages	
temper designations for aluminum alloys	124
heat-treatable alloys	
non-heat-treatable alloys	
temperature conversion	31
absolute temperature	
tempering steel	
oxide color of various temperatures	131
thread form, Unified and American Standard	159
thread repair hardware	
acres sleeves	
helicoil insert	
threaded fasteners	177
bolt fits	
bolt installation	
bolts	
nuts	
threaded fastener safetying	
cotter pins	
locking washers	
safety wire and safety wire twisting	190
threads and threading tools	159
body and tap drill sizes	
screw pitch gage	
taps	160
thread-cutting tools	
torgue and torgue wrenches	
click-type torque wrench	
deflecting-beam torgue wrench	
recommended torque values	
torque conversions	
trigonometric functions	61

Т

truss structure	14
turnbuckles	
twill weave	300
twist drillsharpening	
drill point gage	
twist drillsizes	151
twist drills	151

u

ultrasonic inspection

V

6
1
1
1
7

W

warp face	
warp yarns	
washers	
weave style numbers	
wire and circuit protectors	109
wire size, selection of	
wrenches	
adjustable open end wrench	
box end wrench	
combination wrench	
flare nut wrench	
open end wrench	
ratcheting box wrench	170
ratcheting open end wrench	

у

yarn part numbering systems	. 298
yarns/tows	. 297

Alejandrod fabron...

Aviation Mechanic Handbook

| **∂** ▶'=> \ Mv\r,n ∨t I\I ""HV°Pf!>- E';TA. l£c.c.\(N **t,J 1\.c.-,iJN** ,, **k**M^I NI'O:

Aviation Mechanic Handbook by Dale Crane

Fifth Edition

Handy toolbox-size reference for mechanics, aircraft owners, and pilots. All the information critical to maintaining an aircraft. Your single source for:

- mathematics, conversions, formulas
- aircraft nomenclature, controls, system specs
- material and tool identifications
- hardware sizes and equivalents
- inspections, corrosion detection and control
- frequently used scales, charts, diagrams, and much more.

ISBN 978-1-56027-591-6

560

Index included.

Aviation Supplies & Academics, Inc. 7005 132nd Place SE Newcastle, Washington 98059-3153

www.asa2fly.com

